Competition between H and CO for Active Sites Governs Copper‐Mediated Electrosynthesis of Hydrocarbon Fuels

The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO2. Reaction order experiments were conducted at low temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2018-08, Vol.57 (32), p.10221-10225
Hauptverfasser: Schreier, Marcel, Yoon, Youngmin, Jackson, Megan N., Surendranath, Yogesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10225
container_issue 32
container_start_page 10221
container_title Angewandte Chemie International Edition
container_volume 57
creator Schreier, Marcel
Yoon, Youngmin
Jackson, Megan N.
Surendranath, Yogesh
description The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO2. Reaction order experiments were conducted at low temperature in an ethanol medium affording high solubility and surface‐affinity for carbon monoxide. Surprisingly, the methane production rate is suppressed by increasing the pressure of CO, whereas ethylene production remains largely unaffected. The data show that CH4 and H2 production are linked through a common H intermediate and that methane is formed through reactions among adsorbed H and CO, which are in direct competition with each other for surface sites. The data exclude the participation of solution species in rate‐limiting steps, highlighting the importance of increasing surface recombination rates for efficient fuel synthesis. Understanding hydrocarbon electrosynthesis: Copper can catalyze the reduction of CO2 and CO to hydrocarbons, but does so inefficiently and with poor selectivity. Kinetic measurements indicate that methane and hydrogen formation proceeds via rate‐limiting recombination of surface‐bound intermediates. Tuning the reaction rates between surface‐bound H and CO species, which compete for active sites, is essential for more efficient catalysis.
doi_str_mv 10.1002/anie.201806051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2057442982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078578104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4761-40aa5cb1a63c863a68bdafa76db474b319601f2b120acfeaa3fbea3e27e2abb03</originalsourceid><addsrcrecordid>eNqF0c1O3DAUBWCralUo7ZYlstQNm0z9k8TJchQNDBIti7br6Nq5EUZJnNoOo9nxCDxjn6RGQ0Hqpit78d0j-x5CTjlbccbEF5gsrgTjFStZwd-QY14Inkml5Nt0z6XMVFXwI_IhhLvkq-TekyNR14LVjB-TsXHjjNFG6yaqMe4QJ7qlMHW0uaG983Rtor1H-t1GDPTS3aOfAm3cPKP__fD4FTsLETu6GdBE78J-ircYbKCup9t9550Br1P2xYJD-Eje9TAE_PR8npCfF5sfzTa7vrm8atbXmclVybOcARRGcyilqUoJZaU76EGVnc5VriWvS8Z7oblgYHoEkL1GkCgUCtCayRNyfsidvfu1YIjtaIPBYYAJ3RJawQqV56KuRKKf_6F3bvFTel1SaXeq4ixPanVQJn0xeOzb2dsR_L7lrH0qon0qon0pIg2cPccuesTuhf_dfAL1AezsgPv_xLXrb1eb1_A_xEaWqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078578104</pqid></control><display><type>article</type><title>Competition between H and CO for Active Sites Governs Copper‐Mediated Electrosynthesis of Hydrocarbon Fuels</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schreier, Marcel ; Yoon, Youngmin ; Jackson, Megan N. ; Surendranath, Yogesh</creator><creatorcontrib>Schreier, Marcel ; Yoon, Youngmin ; Jackson, Megan N. ; Surendranath, Yogesh</creatorcontrib><description>The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO2. Reaction order experiments were conducted at low temperature in an ethanol medium affording high solubility and surface‐affinity for carbon monoxide. Surprisingly, the methane production rate is suppressed by increasing the pressure of CO, whereas ethylene production remains largely unaffected. The data show that CH4 and H2 production are linked through a common H intermediate and that methane is formed through reactions among adsorbed H and CO, which are in direct competition with each other for surface sites. The data exclude the participation of solution species in rate‐limiting steps, highlighting the importance of increasing surface recombination rates for efficient fuel synthesis. Understanding hydrocarbon electrosynthesis: Copper can catalyze the reduction of CO2 and CO to hydrocarbons, but does so inefficiently and with poor selectivity. Kinetic measurements indicate that methane and hydrogen formation proceeds via rate‐limiting recombination of surface‐bound intermediates. Tuning the reaction rates between surface‐bound H and CO species, which compete for active sites, is essential for more efficient catalysis.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201806051</identifier><identifier>PMID: 29920901</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Carbon monoxide ; Chemical reduction ; CO2 reduction ; Competition ; Copper ; Electrochemistry ; energy conversion ; Ethanol ; Ethylene ; Hydrocarbon fuels ; Hydrogen production ; Low temperature ; Methane ; Recombination ; solar fuels</subject><ispartof>Angewandte Chemie International Edition, 2018-08, Vol.57 (32), p.10221-10225</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4761-40aa5cb1a63c863a68bdafa76db474b319601f2b120acfeaa3fbea3e27e2abb03</citedby><cites>FETCH-LOGICAL-c4761-40aa5cb1a63c863a68bdafa76db474b319601f2b120acfeaa3fbea3e27e2abb03</cites><orcidid>0000-0002-3674-5667 ; 0000-0003-1016-3420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201806051$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201806051$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29920901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schreier, Marcel</creatorcontrib><creatorcontrib>Yoon, Youngmin</creatorcontrib><creatorcontrib>Jackson, Megan N.</creatorcontrib><creatorcontrib>Surendranath, Yogesh</creatorcontrib><title>Competition between H and CO for Active Sites Governs Copper‐Mediated Electrosynthesis of Hydrocarbon Fuels</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO2. Reaction order experiments were conducted at low temperature in an ethanol medium affording high solubility and surface‐affinity for carbon monoxide. Surprisingly, the methane production rate is suppressed by increasing the pressure of CO, whereas ethylene production remains largely unaffected. The data show that CH4 and H2 production are linked through a common H intermediate and that methane is formed through reactions among adsorbed H and CO, which are in direct competition with each other for surface sites. The data exclude the participation of solution species in rate‐limiting steps, highlighting the importance of increasing surface recombination rates for efficient fuel synthesis. Understanding hydrocarbon electrosynthesis: Copper can catalyze the reduction of CO2 and CO to hydrocarbons, but does so inefficiently and with poor selectivity. Kinetic measurements indicate that methane and hydrogen formation proceeds via rate‐limiting recombination of surface‐bound intermediates. Tuning the reaction rates between surface‐bound H and CO species, which compete for active sites, is essential for more efficient catalysis.</description><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Chemical reduction</subject><subject>CO2 reduction</subject><subject>Competition</subject><subject>Copper</subject><subject>Electrochemistry</subject><subject>energy conversion</subject><subject>Ethanol</subject><subject>Ethylene</subject><subject>Hydrocarbon fuels</subject><subject>Hydrogen production</subject><subject>Low temperature</subject><subject>Methane</subject><subject>Recombination</subject><subject>solar fuels</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqF0c1O3DAUBWCralUo7ZYlstQNm0z9k8TJchQNDBIti7br6Nq5EUZJnNoOo9nxCDxjn6RGQ0Hqpit78d0j-x5CTjlbccbEF5gsrgTjFStZwd-QY14Inkml5Nt0z6XMVFXwI_IhhLvkq-TekyNR14LVjB-TsXHjjNFG6yaqMe4QJ7qlMHW0uaG983Rtor1H-t1GDPTS3aOfAm3cPKP__fD4FTsLETu6GdBE78J-ircYbKCup9t9550Br1P2xYJD-Eje9TAE_PR8npCfF5sfzTa7vrm8atbXmclVybOcARRGcyilqUoJZaU76EGVnc5VriWvS8Z7oblgYHoEkL1GkCgUCtCayRNyfsidvfu1YIjtaIPBYYAJ3RJawQqV56KuRKKf_6F3bvFTel1SaXeq4ixPanVQJn0xeOzb2dsR_L7lrH0qon0qon0pIg2cPccuesTuhf_dfAL1AezsgPv_xLXrb1eb1_A_xEaWqA</recordid><startdate>20180806</startdate><enddate>20180806</enddate><creator>Schreier, Marcel</creator><creator>Yoon, Youngmin</creator><creator>Jackson, Megan N.</creator><creator>Surendranath, Yogesh</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3674-5667</orcidid><orcidid>https://orcid.org/0000-0003-1016-3420</orcidid></search><sort><creationdate>20180806</creationdate><title>Competition between H and CO for Active Sites Governs Copper‐Mediated Electrosynthesis of Hydrocarbon Fuels</title><author>Schreier, Marcel ; Yoon, Youngmin ; Jackson, Megan N. ; Surendranath, Yogesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4761-40aa5cb1a63c863a68bdafa76db474b319601f2b120acfeaa3fbea3e27e2abb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Chemical reduction</topic><topic>CO2 reduction</topic><topic>Competition</topic><topic>Copper</topic><topic>Electrochemistry</topic><topic>energy conversion</topic><topic>Ethanol</topic><topic>Ethylene</topic><topic>Hydrocarbon fuels</topic><topic>Hydrogen production</topic><topic>Low temperature</topic><topic>Methane</topic><topic>Recombination</topic><topic>solar fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schreier, Marcel</creatorcontrib><creatorcontrib>Yoon, Youngmin</creatorcontrib><creatorcontrib>Jackson, Megan N.</creatorcontrib><creatorcontrib>Surendranath, Yogesh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schreier, Marcel</au><au>Yoon, Youngmin</au><au>Jackson, Megan N.</au><au>Surendranath, Yogesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competition between H and CO for Active Sites Governs Copper‐Mediated Electrosynthesis of Hydrocarbon Fuels</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2018-08-06</date><risdate>2018</risdate><volume>57</volume><issue>32</issue><spage>10221</spage><epage>10225</epage><pages>10221-10225</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO2. Reaction order experiments were conducted at low temperature in an ethanol medium affording high solubility and surface‐affinity for carbon monoxide. Surprisingly, the methane production rate is suppressed by increasing the pressure of CO, whereas ethylene production remains largely unaffected. The data show that CH4 and H2 production are linked through a common H intermediate and that methane is formed through reactions among adsorbed H and CO, which are in direct competition with each other for surface sites. The data exclude the participation of solution species in rate‐limiting steps, highlighting the importance of increasing surface recombination rates for efficient fuel synthesis. Understanding hydrocarbon electrosynthesis: Copper can catalyze the reduction of CO2 and CO to hydrocarbons, but does so inefficiently and with poor selectivity. Kinetic measurements indicate that methane and hydrogen formation proceeds via rate‐limiting recombination of surface‐bound intermediates. Tuning the reaction rates between surface‐bound H and CO species, which compete for active sites, is essential for more efficient catalysis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29920901</pmid><doi>10.1002/anie.201806051</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-3674-5667</orcidid><orcidid>https://orcid.org/0000-0003-1016-3420</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2018-08, Vol.57 (32), p.10221-10225
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2057442982
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
Carbon monoxide
Chemical reduction
CO2 reduction
Competition
Copper
Electrochemistry
energy conversion
Ethanol
Ethylene
Hydrocarbon fuels
Hydrogen production
Low temperature
Methane
Recombination
solar fuels
title Competition between H and CO for Active Sites Governs Copper‐Mediated Electrosynthesis of Hydrocarbon Fuels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competition%20between%20H%20and%20CO%20for%20Active%20Sites%20Governs%20Copper%E2%80%90Mediated%20Electrosynthesis%20of%20Hydrocarbon%20Fuels&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Schreier,%20Marcel&rft.date=2018-08-06&rft.volume=57&rft.issue=32&rft.spage=10221&rft.epage=10225&rft.pages=10221-10225&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201806051&rft_dat=%3Cproquest_cross%3E2078578104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078578104&rft_id=info:pmid/29920901&rfr_iscdi=true