Competition between H and CO for Active Sites Governs Copper‐Mediated Electrosynthesis of Hydrocarbon Fuels
The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO2. Reaction order experiments were conducted at low temp...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2018-08, Vol.57 (32), p.10221-10225 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10225 |
---|---|
container_issue | 32 |
container_start_page | 10221 |
container_title | Angewandte Chemie International Edition |
container_volume | 57 |
creator | Schreier, Marcel Yoon, Youngmin Jackson, Megan N. Surendranath, Yogesh |
description | The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO2. Reaction order experiments were conducted at low temperature in an ethanol medium affording high solubility and surface‐affinity for carbon monoxide. Surprisingly, the methane production rate is suppressed by increasing the pressure of CO, whereas ethylene production remains largely unaffected. The data show that CH4 and H2 production are linked through a common H intermediate and that methane is formed through reactions among adsorbed H and CO, which are in direct competition with each other for surface sites. The data exclude the participation of solution species in rate‐limiting steps, highlighting the importance of increasing surface recombination rates for efficient fuel synthesis.
Understanding hydrocarbon electrosynthesis: Copper can catalyze the reduction of CO2 and CO to hydrocarbons, but does so inefficiently and with poor selectivity. Kinetic measurements indicate that methane and hydrogen formation proceeds via rate‐limiting recombination of surface‐bound intermediates. Tuning the reaction rates between surface‐bound H and CO species, which compete for active sites, is essential for more efficient catalysis. |
doi_str_mv | 10.1002/anie.201806051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2057442982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078578104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4761-40aa5cb1a63c863a68bdafa76db474b319601f2b120acfeaa3fbea3e27e2abb03</originalsourceid><addsrcrecordid>eNqF0c1O3DAUBWCralUo7ZYlstQNm0z9k8TJchQNDBIti7br6Nq5EUZJnNoOo9nxCDxjn6RGQ0Hqpit78d0j-x5CTjlbccbEF5gsrgTjFStZwd-QY14Inkml5Nt0z6XMVFXwI_IhhLvkq-TekyNR14LVjB-TsXHjjNFG6yaqMe4QJ7qlMHW0uaG983Rtor1H-t1GDPTS3aOfAm3cPKP__fD4FTsLETu6GdBE78J-ircYbKCup9t9550Br1P2xYJD-Eje9TAE_PR8npCfF5sfzTa7vrm8atbXmclVybOcARRGcyilqUoJZaU76EGVnc5VriWvS8Z7oblgYHoEkL1GkCgUCtCayRNyfsidvfu1YIjtaIPBYYAJ3RJawQqV56KuRKKf_6F3bvFTel1SaXeq4ixPanVQJn0xeOzb2dsR_L7lrH0qon0qon0pIg2cPccuesTuhf_dfAL1AezsgPv_xLXrb1eb1_A_xEaWqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078578104</pqid></control><display><type>article</type><title>Competition between H and CO for Active Sites Governs Copper‐Mediated Electrosynthesis of Hydrocarbon Fuels</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schreier, Marcel ; Yoon, Youngmin ; Jackson, Megan N. ; Surendranath, Yogesh</creator><creatorcontrib>Schreier, Marcel ; Yoon, Youngmin ; Jackson, Megan N. ; Surendranath, Yogesh</creatorcontrib><description>The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO2. Reaction order experiments were conducted at low temperature in an ethanol medium affording high solubility and surface‐affinity for carbon monoxide. Surprisingly, the methane production rate is suppressed by increasing the pressure of CO, whereas ethylene production remains largely unaffected. The data show that CH4 and H2 production are linked through a common H intermediate and that methane is formed through reactions among adsorbed H and CO, which are in direct competition with each other for surface sites. The data exclude the participation of solution species in rate‐limiting steps, highlighting the importance of increasing surface recombination rates for efficient fuel synthesis.
Understanding hydrocarbon electrosynthesis: Copper can catalyze the reduction of CO2 and CO to hydrocarbons, but does so inefficiently and with poor selectivity. Kinetic measurements indicate that methane and hydrogen formation proceeds via rate‐limiting recombination of surface‐bound intermediates. Tuning the reaction rates between surface‐bound H and CO species, which compete for active sites, is essential for more efficient catalysis.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201806051</identifier><identifier>PMID: 29920901</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Carbon monoxide ; Chemical reduction ; CO2 reduction ; Competition ; Copper ; Electrochemistry ; energy conversion ; Ethanol ; Ethylene ; Hydrocarbon fuels ; Hydrogen production ; Low temperature ; Methane ; Recombination ; solar fuels</subject><ispartof>Angewandte Chemie International Edition, 2018-08, Vol.57 (32), p.10221-10225</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4761-40aa5cb1a63c863a68bdafa76db474b319601f2b120acfeaa3fbea3e27e2abb03</citedby><cites>FETCH-LOGICAL-c4761-40aa5cb1a63c863a68bdafa76db474b319601f2b120acfeaa3fbea3e27e2abb03</cites><orcidid>0000-0002-3674-5667 ; 0000-0003-1016-3420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201806051$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201806051$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29920901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schreier, Marcel</creatorcontrib><creatorcontrib>Yoon, Youngmin</creatorcontrib><creatorcontrib>Jackson, Megan N.</creatorcontrib><creatorcontrib>Surendranath, Yogesh</creatorcontrib><title>Competition between H and CO for Active Sites Governs Copper‐Mediated Electrosynthesis of Hydrocarbon Fuels</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO2. Reaction order experiments were conducted at low temperature in an ethanol medium affording high solubility and surface‐affinity for carbon monoxide. Surprisingly, the methane production rate is suppressed by increasing the pressure of CO, whereas ethylene production remains largely unaffected. The data show that CH4 and H2 production are linked through a common H intermediate and that methane is formed through reactions among adsorbed H and CO, which are in direct competition with each other for surface sites. The data exclude the participation of solution species in rate‐limiting steps, highlighting the importance of increasing surface recombination rates for efficient fuel synthesis.
Understanding hydrocarbon electrosynthesis: Copper can catalyze the reduction of CO2 and CO to hydrocarbons, but does so inefficiently and with poor selectivity. Kinetic measurements indicate that methane and hydrogen formation proceeds via rate‐limiting recombination of surface‐bound intermediates. Tuning the reaction rates between surface‐bound H and CO species, which compete for active sites, is essential for more efficient catalysis.</description><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Chemical reduction</subject><subject>CO2 reduction</subject><subject>Competition</subject><subject>Copper</subject><subject>Electrochemistry</subject><subject>energy conversion</subject><subject>Ethanol</subject><subject>Ethylene</subject><subject>Hydrocarbon fuels</subject><subject>Hydrogen production</subject><subject>Low temperature</subject><subject>Methane</subject><subject>Recombination</subject><subject>solar fuels</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqF0c1O3DAUBWCralUo7ZYlstQNm0z9k8TJchQNDBIti7br6Nq5EUZJnNoOo9nxCDxjn6RGQ0Hqpit78d0j-x5CTjlbccbEF5gsrgTjFStZwd-QY14Inkml5Nt0z6XMVFXwI_IhhLvkq-TekyNR14LVjB-TsXHjjNFG6yaqMe4QJ7qlMHW0uaG983Rtor1H-t1GDPTS3aOfAm3cPKP__fD4FTsLETu6GdBE78J-ircYbKCup9t9550Br1P2xYJD-Eje9TAE_PR8npCfF5sfzTa7vrm8atbXmclVybOcARRGcyilqUoJZaU76EGVnc5VriWvS8Z7oblgYHoEkL1GkCgUCtCayRNyfsidvfu1YIjtaIPBYYAJ3RJawQqV56KuRKKf_6F3bvFTel1SaXeq4ixPanVQJn0xeOzb2dsR_L7lrH0qon0qon0pIg2cPccuesTuhf_dfAL1AezsgPv_xLXrb1eb1_A_xEaWqA</recordid><startdate>20180806</startdate><enddate>20180806</enddate><creator>Schreier, Marcel</creator><creator>Yoon, Youngmin</creator><creator>Jackson, Megan N.</creator><creator>Surendranath, Yogesh</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3674-5667</orcidid><orcidid>https://orcid.org/0000-0003-1016-3420</orcidid></search><sort><creationdate>20180806</creationdate><title>Competition between H and CO for Active Sites Governs Copper‐Mediated Electrosynthesis of Hydrocarbon Fuels</title><author>Schreier, Marcel ; Yoon, Youngmin ; Jackson, Megan N. ; Surendranath, Yogesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4761-40aa5cb1a63c863a68bdafa76db474b319601f2b120acfeaa3fbea3e27e2abb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Chemical reduction</topic><topic>CO2 reduction</topic><topic>Competition</topic><topic>Copper</topic><topic>Electrochemistry</topic><topic>energy conversion</topic><topic>Ethanol</topic><topic>Ethylene</topic><topic>Hydrocarbon fuels</topic><topic>Hydrogen production</topic><topic>Low temperature</topic><topic>Methane</topic><topic>Recombination</topic><topic>solar fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schreier, Marcel</creatorcontrib><creatorcontrib>Yoon, Youngmin</creatorcontrib><creatorcontrib>Jackson, Megan N.</creatorcontrib><creatorcontrib>Surendranath, Yogesh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schreier, Marcel</au><au>Yoon, Youngmin</au><au>Jackson, Megan N.</au><au>Surendranath, Yogesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competition between H and CO for Active Sites Governs Copper‐Mediated Electrosynthesis of Hydrocarbon Fuels</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2018-08-06</date><risdate>2018</risdate><volume>57</volume><issue>32</issue><spage>10221</spage><epage>10225</epage><pages>10221-10225</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO2. Reaction order experiments were conducted at low temperature in an ethanol medium affording high solubility and surface‐affinity for carbon monoxide. Surprisingly, the methane production rate is suppressed by increasing the pressure of CO, whereas ethylene production remains largely unaffected. The data show that CH4 and H2 production are linked through a common H intermediate and that methane is formed through reactions among adsorbed H and CO, which are in direct competition with each other for surface sites. The data exclude the participation of solution species in rate‐limiting steps, highlighting the importance of increasing surface recombination rates for efficient fuel synthesis.
Understanding hydrocarbon electrosynthesis: Copper can catalyze the reduction of CO2 and CO to hydrocarbons, but does so inefficiently and with poor selectivity. Kinetic measurements indicate that methane and hydrogen formation proceeds via rate‐limiting recombination of surface‐bound intermediates. Tuning the reaction rates between surface‐bound H and CO species, which compete for active sites, is essential for more efficient catalysis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29920901</pmid><doi>10.1002/anie.201806051</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-3674-5667</orcidid><orcidid>https://orcid.org/0000-0003-1016-3420</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2018-08, Vol.57 (32), p.10221-10225 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2057442982 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon dioxide Carbon monoxide Chemical reduction CO2 reduction Competition Copper Electrochemistry energy conversion Ethanol Ethylene Hydrocarbon fuels Hydrogen production Low temperature Methane Recombination solar fuels |
title | Competition between H and CO for Active Sites Governs Copper‐Mediated Electrosynthesis of Hydrocarbon Fuels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competition%20between%20H%20and%20CO%20for%20Active%20Sites%20Governs%20Copper%E2%80%90Mediated%20Electrosynthesis%20of%20Hydrocarbon%20Fuels&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Schreier,%20Marcel&rft.date=2018-08-06&rft.volume=57&rft.issue=32&rft.spage=10221&rft.epage=10225&rft.pages=10221-10225&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201806051&rft_dat=%3Cproquest_cross%3E2078578104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078578104&rft_id=info:pmid/29920901&rfr_iscdi=true |