Ground‐State Structure of the Proton‐Bound Formate Dimer by Cold‐Ion Infrared Action Spectroscopy
The proton‐bound dicarboxylate motif, RCOO−⋅H+⋅−OOCR, is a prevalent chemical configuration found in many condensed‐phase systems. The proton‐bound formate dimer HCOO−⋅H+⋅−OOCH was studied utilizing cold‐ion IR action spectroscopy in the range 400–1800 cm−1. The spectrum obtained at ca. 0.4 K of ion...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2018-08, Vol.57 (33), p.10615-10619 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10619 |
---|---|
container_issue | 33 |
container_start_page | 10615 |
container_title | Angewandte Chemie International Edition |
container_volume | 57 |
creator | Thomas, Daniel A. Marianski, Mateusz Mucha, Eike Meijer, Gerard Johnson, Mark A. von Helden, Gert |
description | The proton‐bound dicarboxylate motif, RCOO−⋅H+⋅−OOCR, is a prevalent chemical configuration found in many condensed‐phase systems. The proton‐bound formate dimer HCOO−⋅H+⋅−OOCH was studied utilizing cold‐ion IR action spectroscopy in the range 400–1800 cm−1. The spectrum obtained at ca. 0.4 K of ions captured in He nanodroplets was compared to that measured at ca. 10 K by photodissociation of Ar‐ion complexes. Similar band patterns are obtained by the two techniques that are consistent with calculations for a C2 symmetry structure with a proton shared equally between the two formate moieties. Isotopic substitution experiments point to the nominal parallel stretch of the bridging proton appearing as a sharp, dominant feature near 600 cm−1. Multidimensional anharmonic calculations reveal that the bridging proton motion is strongly coupled to the flanking −COO− framework, an effect that is in line with the expected change in −C=O bond rehybridization upon protonation.
The cold song: The proton‐bound dicarboxylate motif, RCOO−⋅H+⋅−OOCR, is encountered frequently, for example in protic ionic liquids and protein active sites. However, the location of the bridging proton can be challenging to ascertain. Cold‐ion IR spectroscopy reveals that the isolated formate proton‐bound dimer, HCOO−⋅H+⋅−OOCH, exhibits a fully shared proton. Bridging proton motion couples strongly to deformation of the flanking −COO− framework. |
doi_str_mv | 10.1002/anie.201805436 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2057438563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057438563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5166-87520019a265ebb6e069c1c363bbfb4b2529746a71490c2127d3a22e4f6f5f8d3</originalsourceid><addsrcrecordid>eNqF0c1O3DAQB3ALtQIKvXJElnrpJYs9jj9y3G6BroQK0tJz5DgTCErireOo2lsfoc_YJ6mjpSD10pNt-Td_2TOEnHG24IzBhR1aXADjhslcqANyzCXwTGgt3qR9LkSmjeRH5N04PiVvDFOH5AiKAgQYfUweroOfhvr3z1-baCPSTQyTi1NA6hsaH5HeBR_9kO4_zY5e-dDP7nPbY6DVjq58N1ev_UDXQxNswJouXWzTebNFF4Mfnd_uTsnbxnYjvn9eT8i3q8v71Zfs5vZ6vVreZE5ypTKjJTDGCwtKYlUpZKpw3Aklqqqp8gokFDpXVvO8YA446FpYAMwb1cjG1OKEfNznboP_PuEYy74dHXadHdBPYwlM6lwYqUSiH_6hT34KQ3pdUiaHIvULklrslUs_GQM25Ta0vQ27krNyHkE5j6B8GUEqOH-Onaoe6xf-t-cJFHvwo-1w95-4cvl1ffka_gfxA5SN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084290022</pqid></control><display><type>article</type><title>Ground‐State Structure of the Proton‐Bound Formate Dimer by Cold‐Ion Infrared Action Spectroscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Thomas, Daniel A. ; Marianski, Mateusz ; Mucha, Eike ; Meijer, Gerard ; Johnson, Mark A. ; von Helden, Gert</creator><creatorcontrib>Thomas, Daniel A. ; Marianski, Mateusz ; Mucha, Eike ; Meijer, Gerard ; Johnson, Mark A. ; von Helden, Gert</creatorcontrib><description>The proton‐bound dicarboxylate motif, RCOO−⋅H+⋅−OOCR, is a prevalent chemical configuration found in many condensed‐phase systems. The proton‐bound formate dimer HCOO−⋅H+⋅−OOCH was studied utilizing cold‐ion IR action spectroscopy in the range 400–1800 cm−1. The spectrum obtained at ca. 0.4 K of ions captured in He nanodroplets was compared to that measured at ca. 10 K by photodissociation of Ar‐ion complexes. Similar band patterns are obtained by the two techniques that are consistent with calculations for a C2 symmetry structure with a proton shared equally between the two formate moieties. Isotopic substitution experiments point to the nominal parallel stretch of the bridging proton appearing as a sharp, dominant feature near 600 cm−1. Multidimensional anharmonic calculations reveal that the bridging proton motion is strongly coupled to the flanking −COO− framework, an effect that is in line with the expected change in −C=O bond rehybridization upon protonation.
The cold song: The proton‐bound dicarboxylate motif, RCOO−⋅H+⋅−OOCR, is encountered frequently, for example in protic ionic liquids and protein active sites. However, the location of the bridging proton can be challenging to ascertain. Cold‐ion IR spectroscopy reveals that the isolated formate proton‐bound dimer, HCOO−⋅H+⋅−OOCH, exhibits a fully shared proton. Bridging proton motion couples strongly to deformation of the flanking −COO− framework.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201805436</identifier><identifier>PMID: 29923287</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anharmonicity ; carboxylates ; cold-ion spectroscopy ; coupling ; Dimers ; helium nanodroplets ; Hydrogen ; Infrared spectroscopy ; Mathematical analysis ; Molecular structure ; Organic chemistry ; Photodissociation ; Protonation ; Protons ; shared protons ; Spectroscopy ; Spectrum analysis</subject><ispartof>Angewandte Chemie International Edition, 2018-08, Vol.57 (33), p.10615-10619</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5166-87520019a265ebb6e069c1c363bbfb4b2529746a71490c2127d3a22e4f6f5f8d3</citedby><cites>FETCH-LOGICAL-c5166-87520019a265ebb6e069c1c363bbfb4b2529746a71490c2127d3a22e4f6f5f8d3</cites><orcidid>0000-0001-9415-5991 ; 0000-0002-6566-9931 ; 0000-0002-1492-6993 ; 0000-0001-7611-8740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201805436$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201805436$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29923287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Daniel A.</creatorcontrib><creatorcontrib>Marianski, Mateusz</creatorcontrib><creatorcontrib>Mucha, Eike</creatorcontrib><creatorcontrib>Meijer, Gerard</creatorcontrib><creatorcontrib>Johnson, Mark A.</creatorcontrib><creatorcontrib>von Helden, Gert</creatorcontrib><title>Ground‐State Structure of the Proton‐Bound Formate Dimer by Cold‐Ion Infrared Action Spectroscopy</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The proton‐bound dicarboxylate motif, RCOO−⋅H+⋅−OOCR, is a prevalent chemical configuration found in many condensed‐phase systems. The proton‐bound formate dimer HCOO−⋅H+⋅−OOCH was studied utilizing cold‐ion IR action spectroscopy in the range 400–1800 cm−1. The spectrum obtained at ca. 0.4 K of ions captured in He nanodroplets was compared to that measured at ca. 10 K by photodissociation of Ar‐ion complexes. Similar band patterns are obtained by the two techniques that are consistent with calculations for a C2 symmetry structure with a proton shared equally between the two formate moieties. Isotopic substitution experiments point to the nominal parallel stretch of the bridging proton appearing as a sharp, dominant feature near 600 cm−1. Multidimensional anharmonic calculations reveal that the bridging proton motion is strongly coupled to the flanking −COO− framework, an effect that is in line with the expected change in −C=O bond rehybridization upon protonation.
The cold song: The proton‐bound dicarboxylate motif, RCOO−⋅H+⋅−OOCR, is encountered frequently, for example in protic ionic liquids and protein active sites. However, the location of the bridging proton can be challenging to ascertain. Cold‐ion IR spectroscopy reveals that the isolated formate proton‐bound dimer, HCOO−⋅H+⋅−OOCH, exhibits a fully shared proton. Bridging proton motion couples strongly to deformation of the flanking −COO− framework.</description><subject>Anharmonicity</subject><subject>carboxylates</subject><subject>cold-ion spectroscopy</subject><subject>coupling</subject><subject>Dimers</subject><subject>helium nanodroplets</subject><subject>Hydrogen</subject><subject>Infrared spectroscopy</subject><subject>Mathematical analysis</subject><subject>Molecular structure</subject><subject>Organic chemistry</subject><subject>Photodissociation</subject><subject>Protonation</subject><subject>Protons</subject><subject>shared protons</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqF0c1O3DAQB3ALtQIKvXJElnrpJYs9jj9y3G6BroQK0tJz5DgTCErireOo2lsfoc_YJ6mjpSD10pNt-Td_2TOEnHG24IzBhR1aXADjhslcqANyzCXwTGgt3qR9LkSmjeRH5N04PiVvDFOH5AiKAgQYfUweroOfhvr3z1-baCPSTQyTi1NA6hsaH5HeBR_9kO4_zY5e-dDP7nPbY6DVjq58N1ev_UDXQxNswJouXWzTebNFF4Mfnd_uTsnbxnYjvn9eT8i3q8v71Zfs5vZ6vVreZE5ypTKjJTDGCwtKYlUpZKpw3Aklqqqp8gokFDpXVvO8YA446FpYAMwb1cjG1OKEfNznboP_PuEYy74dHXadHdBPYwlM6lwYqUSiH_6hT34KQ3pdUiaHIvULklrslUs_GQM25Ta0vQ27krNyHkE5j6B8GUEqOH-Onaoe6xf-t-cJFHvwo-1w95-4cvl1ffka_gfxA5SN</recordid><startdate>20180813</startdate><enddate>20180813</enddate><creator>Thomas, Daniel A.</creator><creator>Marianski, Mateusz</creator><creator>Mucha, Eike</creator><creator>Meijer, Gerard</creator><creator>Johnson, Mark A.</creator><creator>von Helden, Gert</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9415-5991</orcidid><orcidid>https://orcid.org/0000-0002-6566-9931</orcidid><orcidid>https://orcid.org/0000-0002-1492-6993</orcidid><orcidid>https://orcid.org/0000-0001-7611-8740</orcidid></search><sort><creationdate>20180813</creationdate><title>Ground‐State Structure of the Proton‐Bound Formate Dimer by Cold‐Ion Infrared Action Spectroscopy</title><author>Thomas, Daniel A. ; Marianski, Mateusz ; Mucha, Eike ; Meijer, Gerard ; Johnson, Mark A. ; von Helden, Gert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5166-87520019a265ebb6e069c1c363bbfb4b2529746a71490c2127d3a22e4f6f5f8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anharmonicity</topic><topic>carboxylates</topic><topic>cold-ion spectroscopy</topic><topic>coupling</topic><topic>Dimers</topic><topic>helium nanodroplets</topic><topic>Hydrogen</topic><topic>Infrared spectroscopy</topic><topic>Mathematical analysis</topic><topic>Molecular structure</topic><topic>Organic chemistry</topic><topic>Photodissociation</topic><topic>Protonation</topic><topic>Protons</topic><topic>shared protons</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Daniel A.</creatorcontrib><creatorcontrib>Marianski, Mateusz</creatorcontrib><creatorcontrib>Mucha, Eike</creatorcontrib><creatorcontrib>Meijer, Gerard</creatorcontrib><creatorcontrib>Johnson, Mark A.</creatorcontrib><creatorcontrib>von Helden, Gert</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Daniel A.</au><au>Marianski, Mateusz</au><au>Mucha, Eike</au><au>Meijer, Gerard</au><au>Johnson, Mark A.</au><au>von Helden, Gert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ground‐State Structure of the Proton‐Bound Formate Dimer by Cold‐Ion Infrared Action Spectroscopy</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2018-08-13</date><risdate>2018</risdate><volume>57</volume><issue>33</issue><spage>10615</spage><epage>10619</epage><pages>10615-10619</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The proton‐bound dicarboxylate motif, RCOO−⋅H+⋅−OOCR, is a prevalent chemical configuration found in many condensed‐phase systems. The proton‐bound formate dimer HCOO−⋅H+⋅−OOCH was studied utilizing cold‐ion IR action spectroscopy in the range 400–1800 cm−1. The spectrum obtained at ca. 0.4 K of ions captured in He nanodroplets was compared to that measured at ca. 10 K by photodissociation of Ar‐ion complexes. Similar band patterns are obtained by the two techniques that are consistent with calculations for a C2 symmetry structure with a proton shared equally between the two formate moieties. Isotopic substitution experiments point to the nominal parallel stretch of the bridging proton appearing as a sharp, dominant feature near 600 cm−1. Multidimensional anharmonic calculations reveal that the bridging proton motion is strongly coupled to the flanking −COO− framework, an effect that is in line with the expected change in −C=O bond rehybridization upon protonation.
The cold song: The proton‐bound dicarboxylate motif, RCOO−⋅H+⋅−OOCR, is encountered frequently, for example in protic ionic liquids and protein active sites. However, the location of the bridging proton can be challenging to ascertain. Cold‐ion IR spectroscopy reveals that the isolated formate proton‐bound dimer, HCOO−⋅H+⋅−OOCH, exhibits a fully shared proton. Bridging proton motion couples strongly to deformation of the flanking −COO− framework.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29923287</pmid><doi>10.1002/anie.201805436</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9415-5991</orcidid><orcidid>https://orcid.org/0000-0002-6566-9931</orcidid><orcidid>https://orcid.org/0000-0002-1492-6993</orcidid><orcidid>https://orcid.org/0000-0001-7611-8740</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2018-08, Vol.57 (33), p.10615-10619 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2057438563 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anharmonicity carboxylates cold-ion spectroscopy coupling Dimers helium nanodroplets Hydrogen Infrared spectroscopy Mathematical analysis Molecular structure Organic chemistry Photodissociation Protonation Protons shared protons Spectroscopy Spectrum analysis |
title | Ground‐State Structure of the Proton‐Bound Formate Dimer by Cold‐Ion Infrared Action Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ground%E2%80%90State%20Structure%20of%20the%20Proton%E2%80%90Bound%20Formate%20Dimer%20by%20Cold%E2%80%90Ion%20Infrared%20Action%20Spectroscopy&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Thomas,%20Daniel%20A.&rft.date=2018-08-13&rft.volume=57&rft.issue=33&rft.spage=10615&rft.epage=10619&rft.pages=10615-10619&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201805436&rft_dat=%3Cproquest_cross%3E2057438563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084290022&rft_id=info:pmid/29923287&rfr_iscdi=true |