Sex chromosome turnovers and genetic drift: a simulation study

The recent advances of new genomic technologies have enabled the identification and characterization of sex chromosomes in an increasing number of nonmodel species, revealing that many plants and animals undergo frequent sex chromosome turnovers. What evolutionary forces drive these turnovers remain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolutionary biology 2018-09, Vol.31 (9), p.1413-1419
Hauptverfasser: Saunders, Paul A., Neuenschwander, Samuel, Perrin, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1419
container_issue 9
container_start_page 1413
container_title Journal of evolutionary biology
container_volume 31
creator Saunders, Paul A.
Neuenschwander, Samuel
Perrin, Nicolas
description The recent advances of new genomic technologies have enabled the identification and characterization of sex chromosomes in an increasing number of nonmodel species, revealing that many plants and animals undergo frequent sex chromosome turnovers. What evolutionary forces drive these turnovers remains poorly understood, but it was recently proposed that drift might play a more important role than generally assumed. We analysed the dynamics of different types of turnovers using individual‐based simulations and show that when mediated by genetic drift, turnovers are usually easier to achieve than substitutions at neutral markers, but that their dynamics and relative likelihoods vary with the type of the resident and emergent sex chromosome system (XY and/or ZW) and the dominance relationships among the sex‐determining factors. Focusing on turnovers driven by epistatically dominant mutations, we find that drift‐mediated turnovers that preserve the heterogamety pattern are 2–4× more likely than those along which the heterogametic sex changes. This ratio nevertheless decreases along with effective population size and can even reverse in case of extreme polygyny. This can be attributed to a ‘drift‐induced’ selective force, known to influence transitions between male and female heterogamety, but which according to our study does not affect turnovers that preserve the heterogametic sex.
doi_str_mv 10.1111/jeb.13336
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2057437699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099266175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4546-668a4056a89e066c921ca80fd1d6e834f30251906542347eddcd05208255a05b3</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgSgUBl4ARWKBIe3xNQkDElTlpkoMgMQWubYDqZK42AnQt8eQwoDEWXyGT798foQOMIxwmPHCzEeYUio20A5mBOIMA94MO2CIQeCnAdr1fgGABeN8Gw1IlhFKmNhBZ_fmI1IvztbW29pEbeca-2acj2Sjo2fTmLZUkXZl0Z5GMvJl3VWyLW0T-bbTqz20VcjKm_31O0SPl9OHyXU8u7u6mZzPYsU4E7EQqWTAhUwzA0KojGAlUyg01sKklBUUCMcZCM4IZYnRWmngBFLCuQQ-p0N03OcunX3tjG_zuvTKVJVsjO18ToAnjCYiywI9-kMXNhwVfhdUuFsInPCgTnqlnPXemSJfurKWbpVjyL9KzUOp-XepwR6uE7t5bfSv_GkxgHEP3svKrP5Pym-nF33kJ9UWfds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099266175</pqid></control><display><type>article</type><title>Sex chromosome turnovers and genetic drift: a simulation study</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Saunders, Paul A. ; Neuenschwander, Samuel ; Perrin, Nicolas</creator><creatorcontrib>Saunders, Paul A. ; Neuenschwander, Samuel ; Perrin, Nicolas</creatorcontrib><description>The recent advances of new genomic technologies have enabled the identification and characterization of sex chromosomes in an increasing number of nonmodel species, revealing that many plants and animals undergo frequent sex chromosome turnovers. What evolutionary forces drive these turnovers remains poorly understood, but it was recently proposed that drift might play a more important role than generally assumed. We analysed the dynamics of different types of turnovers using individual‐based simulations and show that when mediated by genetic drift, turnovers are usually easier to achieve than substitutions at neutral markers, but that their dynamics and relative likelihoods vary with the type of the resident and emergent sex chromosome system (XY and/or ZW) and the dominance relationships among the sex‐determining factors. Focusing on turnovers driven by epistatically dominant mutations, we find that drift‐mediated turnovers that preserve the heterogamety pattern are 2–4× more likely than those along which the heterogametic sex changes. This ratio nevertheless decreases along with effective population size and can even reverse in case of extreme polygyny. This can be attributed to a ‘drift‐induced’ selective force, known to influence transitions between male and female heterogamety, but which according to our study does not affect turnovers that preserve the heterogametic sex.</description><identifier>ISSN: 1010-061X</identifier><identifier>EISSN: 1420-9101</identifier><identifier>DOI: 10.1111/jeb.13336</identifier><identifier>PMID: 29923246</identifier><language>eng</language><publisher>Switzerland: Blackwell Publishing Ltd</publisher><subject>Chromosomes ; Genetic drift ; individual‐based simulations ; Mutation ; Polygyny ; Population number ; quantiNemo ; Sex ; Sex chromosomes ; sex determination ; Sex ratio ; sex ratio selection ; transitions</subject><ispartof>Journal of evolutionary biology, 2018-09, Vol.31 (9), p.1413-1419</ispartof><rights>2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology</rights><rights>2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.</rights><rights>Copyright © 2018 European Society For Evolutionary Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4546-668a4056a89e066c921ca80fd1d6e834f30251906542347eddcd05208255a05b3</citedby><cites>FETCH-LOGICAL-c4546-668a4056a89e066c921ca80fd1d6e834f30251906542347eddcd05208255a05b3</cites><orcidid>0000-0002-7756-6323 ; 0000-0002-6282-0472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjeb.13336$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjeb.13336$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29923246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saunders, Paul A.</creatorcontrib><creatorcontrib>Neuenschwander, Samuel</creatorcontrib><creatorcontrib>Perrin, Nicolas</creatorcontrib><title>Sex chromosome turnovers and genetic drift: a simulation study</title><title>Journal of evolutionary biology</title><addtitle>J Evol Biol</addtitle><description>The recent advances of new genomic technologies have enabled the identification and characterization of sex chromosomes in an increasing number of nonmodel species, revealing that many plants and animals undergo frequent sex chromosome turnovers. What evolutionary forces drive these turnovers remains poorly understood, but it was recently proposed that drift might play a more important role than generally assumed. We analysed the dynamics of different types of turnovers using individual‐based simulations and show that when mediated by genetic drift, turnovers are usually easier to achieve than substitutions at neutral markers, but that their dynamics and relative likelihoods vary with the type of the resident and emergent sex chromosome system (XY and/or ZW) and the dominance relationships among the sex‐determining factors. Focusing on turnovers driven by epistatically dominant mutations, we find that drift‐mediated turnovers that preserve the heterogamety pattern are 2–4× more likely than those along which the heterogametic sex changes. This ratio nevertheless decreases along with effective population size and can even reverse in case of extreme polygyny. This can be attributed to a ‘drift‐induced’ selective force, known to influence transitions between male and female heterogamety, but which according to our study does not affect turnovers that preserve the heterogametic sex.</description><subject>Chromosomes</subject><subject>Genetic drift</subject><subject>individual‐based simulations</subject><subject>Mutation</subject><subject>Polygyny</subject><subject>Population number</subject><subject>quantiNemo</subject><subject>Sex</subject><subject>Sex chromosomes</subject><subject>sex determination</subject><subject>Sex ratio</subject><subject>sex ratio selection</subject><subject>transitions</subject><issn>1010-061X</issn><issn>1420-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgSgUBl4ARWKBIe3xNQkDElTlpkoMgMQWubYDqZK42AnQt8eQwoDEWXyGT798foQOMIxwmPHCzEeYUio20A5mBOIMA94MO2CIQeCnAdr1fgGABeN8Gw1IlhFKmNhBZ_fmI1IvztbW29pEbeca-2acj2Sjo2fTmLZUkXZl0Z5GMvJl3VWyLW0T-bbTqz20VcjKm_31O0SPl9OHyXU8u7u6mZzPYsU4E7EQqWTAhUwzA0KojGAlUyg01sKklBUUCMcZCM4IZYnRWmngBFLCuQQ-p0N03OcunX3tjG_zuvTKVJVsjO18ToAnjCYiywI9-kMXNhwVfhdUuFsInPCgTnqlnPXemSJfurKWbpVjyL9KzUOp-XepwR6uE7t5bfSv_GkxgHEP3svKrP5Pym-nF33kJ9UWfds</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Saunders, Paul A.</creator><creator>Neuenschwander, Samuel</creator><creator>Perrin, Nicolas</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7756-6323</orcidid><orcidid>https://orcid.org/0000-0002-6282-0472</orcidid></search><sort><creationdate>201809</creationdate><title>Sex chromosome turnovers and genetic drift: a simulation study</title><author>Saunders, Paul A. ; Neuenschwander, Samuel ; Perrin, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4546-668a4056a89e066c921ca80fd1d6e834f30251906542347eddcd05208255a05b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chromosomes</topic><topic>Genetic drift</topic><topic>individual‐based simulations</topic><topic>Mutation</topic><topic>Polygyny</topic><topic>Population number</topic><topic>quantiNemo</topic><topic>Sex</topic><topic>Sex chromosomes</topic><topic>sex determination</topic><topic>Sex ratio</topic><topic>sex ratio selection</topic><topic>transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saunders, Paul A.</creatorcontrib><creatorcontrib>Neuenschwander, Samuel</creatorcontrib><creatorcontrib>Perrin, Nicolas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of evolutionary biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saunders, Paul A.</au><au>Neuenschwander, Samuel</au><au>Perrin, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sex chromosome turnovers and genetic drift: a simulation study</atitle><jtitle>Journal of evolutionary biology</jtitle><addtitle>J Evol Biol</addtitle><date>2018-09</date><risdate>2018</risdate><volume>31</volume><issue>9</issue><spage>1413</spage><epage>1419</epage><pages>1413-1419</pages><issn>1010-061X</issn><eissn>1420-9101</eissn><abstract>The recent advances of new genomic technologies have enabled the identification and characterization of sex chromosomes in an increasing number of nonmodel species, revealing that many plants and animals undergo frequent sex chromosome turnovers. What evolutionary forces drive these turnovers remains poorly understood, but it was recently proposed that drift might play a more important role than generally assumed. We analysed the dynamics of different types of turnovers using individual‐based simulations and show that when mediated by genetic drift, turnovers are usually easier to achieve than substitutions at neutral markers, but that their dynamics and relative likelihoods vary with the type of the resident and emergent sex chromosome system (XY and/or ZW) and the dominance relationships among the sex‐determining factors. Focusing on turnovers driven by epistatically dominant mutations, we find that drift‐mediated turnovers that preserve the heterogamety pattern are 2–4× more likely than those along which the heterogametic sex changes. This ratio nevertheless decreases along with effective population size and can even reverse in case of extreme polygyny. This can be attributed to a ‘drift‐induced’ selective force, known to influence transitions between male and female heterogamety, but which according to our study does not affect turnovers that preserve the heterogametic sex.</abstract><cop>Switzerland</cop><pub>Blackwell Publishing Ltd</pub><pmid>29923246</pmid><doi>10.1111/jeb.13336</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7756-6323</orcidid><orcidid>https://orcid.org/0000-0002-6282-0472</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1010-061X
ispartof Journal of evolutionary biology, 2018-09, Vol.31 (9), p.1413-1419
issn 1010-061X
1420-9101
language eng
recordid cdi_proquest_miscellaneous_2057437699
source Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Chromosomes
Genetic drift
individual‐based simulations
Mutation
Polygyny
Population number
quantiNemo
Sex
Sex chromosomes
sex determination
Sex ratio
sex ratio selection
transitions
title Sex chromosome turnovers and genetic drift: a simulation study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A44%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sex%20chromosome%20turnovers%20and%20genetic%20drift:%20a%20simulation%20study&rft.jtitle=Journal%20of%20evolutionary%20biology&rft.au=Saunders,%20Paul%20A.&rft.date=2018-09&rft.volume=31&rft.issue=9&rft.spage=1413&rft.epage=1419&rft.pages=1413-1419&rft.issn=1010-061X&rft.eissn=1420-9101&rft_id=info:doi/10.1111/jeb.13336&rft_dat=%3Cproquest_cross%3E2099266175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099266175&rft_id=info:pmid/29923246&rfr_iscdi=true