Sex chromosome turnovers and genetic drift: a simulation study
The recent advances of new genomic technologies have enabled the identification and characterization of sex chromosomes in an increasing number of nonmodel species, revealing that many plants and animals undergo frequent sex chromosome turnovers. What evolutionary forces drive these turnovers remain...
Gespeichert in:
Veröffentlicht in: | Journal of evolutionary biology 2018-09, Vol.31 (9), p.1413-1419 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1419 |
---|---|
container_issue | 9 |
container_start_page | 1413 |
container_title | Journal of evolutionary biology |
container_volume | 31 |
creator | Saunders, Paul A. Neuenschwander, Samuel Perrin, Nicolas |
description | The recent advances of new genomic technologies have enabled the identification and characterization of sex chromosomes in an increasing number of nonmodel species, revealing that many plants and animals undergo frequent sex chromosome turnovers. What evolutionary forces drive these turnovers remains poorly understood, but it was recently proposed that drift might play a more important role than generally assumed. We analysed the dynamics of different types of turnovers using individual‐based simulations and show that when mediated by genetic drift, turnovers are usually easier to achieve than substitutions at neutral markers, but that their dynamics and relative likelihoods vary with the type of the resident and emergent sex chromosome system (XY and/or ZW) and the dominance relationships among the sex‐determining factors. Focusing on turnovers driven by epistatically dominant mutations, we find that drift‐mediated turnovers that preserve the heterogamety pattern are 2–4× more likely than those along which the heterogametic sex changes. This ratio nevertheless decreases along with effective population size and can even reverse in case of extreme polygyny. This can be attributed to a ‘drift‐induced’ selective force, known to influence transitions between male and female heterogamety, but which according to our study does not affect turnovers that preserve the heterogametic sex. |
doi_str_mv | 10.1111/jeb.13336 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2057437699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099266175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4546-668a4056a89e066c921ca80fd1d6e834f30251906542347eddcd05208255a05b3</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgSgUBl4ARWKBIe3xNQkDElTlpkoMgMQWubYDqZK42AnQt8eQwoDEWXyGT798foQOMIxwmPHCzEeYUio20A5mBOIMA94MO2CIQeCnAdr1fgGABeN8Gw1IlhFKmNhBZ_fmI1IvztbW29pEbeca-2acj2Sjo2fTmLZUkXZl0Z5GMvJl3VWyLW0T-bbTqz20VcjKm_31O0SPl9OHyXU8u7u6mZzPYsU4E7EQqWTAhUwzA0KojGAlUyg01sKklBUUCMcZCM4IZYnRWmngBFLCuQQ-p0N03OcunX3tjG_zuvTKVJVsjO18ToAnjCYiywI9-kMXNhwVfhdUuFsInPCgTnqlnPXemSJfurKWbpVjyL9KzUOp-XepwR6uE7t5bfSv_GkxgHEP3svKrP5Pym-nF33kJ9UWfds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099266175</pqid></control><display><type>article</type><title>Sex chromosome turnovers and genetic drift: a simulation study</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Saunders, Paul A. ; Neuenschwander, Samuel ; Perrin, Nicolas</creator><creatorcontrib>Saunders, Paul A. ; Neuenschwander, Samuel ; Perrin, Nicolas</creatorcontrib><description>The recent advances of new genomic technologies have enabled the identification and characterization of sex chromosomes in an increasing number of nonmodel species, revealing that many plants and animals undergo frequent sex chromosome turnovers. What evolutionary forces drive these turnovers remains poorly understood, but it was recently proposed that drift might play a more important role than generally assumed. We analysed the dynamics of different types of turnovers using individual‐based simulations and show that when mediated by genetic drift, turnovers are usually easier to achieve than substitutions at neutral markers, but that their dynamics and relative likelihoods vary with the type of the resident and emergent sex chromosome system (XY and/or ZW) and the dominance relationships among the sex‐determining factors. Focusing on turnovers driven by epistatically dominant mutations, we find that drift‐mediated turnovers that preserve the heterogamety pattern are 2–4× more likely than those along which the heterogametic sex changes. This ratio nevertheless decreases along with effective population size and can even reverse in case of extreme polygyny. This can be attributed to a ‘drift‐induced’ selective force, known to influence transitions between male and female heterogamety, but which according to our study does not affect turnovers that preserve the heterogametic sex.</description><identifier>ISSN: 1010-061X</identifier><identifier>EISSN: 1420-9101</identifier><identifier>DOI: 10.1111/jeb.13336</identifier><identifier>PMID: 29923246</identifier><language>eng</language><publisher>Switzerland: Blackwell Publishing Ltd</publisher><subject>Chromosomes ; Genetic drift ; individual‐based simulations ; Mutation ; Polygyny ; Population number ; quantiNemo ; Sex ; Sex chromosomes ; sex determination ; Sex ratio ; sex ratio selection ; transitions</subject><ispartof>Journal of evolutionary biology, 2018-09, Vol.31 (9), p.1413-1419</ispartof><rights>2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology</rights><rights>2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.</rights><rights>Copyright © 2018 European Society For Evolutionary Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4546-668a4056a89e066c921ca80fd1d6e834f30251906542347eddcd05208255a05b3</citedby><cites>FETCH-LOGICAL-c4546-668a4056a89e066c921ca80fd1d6e834f30251906542347eddcd05208255a05b3</cites><orcidid>0000-0002-7756-6323 ; 0000-0002-6282-0472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjeb.13336$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjeb.13336$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29923246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saunders, Paul A.</creatorcontrib><creatorcontrib>Neuenschwander, Samuel</creatorcontrib><creatorcontrib>Perrin, Nicolas</creatorcontrib><title>Sex chromosome turnovers and genetic drift: a simulation study</title><title>Journal of evolutionary biology</title><addtitle>J Evol Biol</addtitle><description>The recent advances of new genomic technologies have enabled the identification and characterization of sex chromosomes in an increasing number of nonmodel species, revealing that many plants and animals undergo frequent sex chromosome turnovers. What evolutionary forces drive these turnovers remains poorly understood, but it was recently proposed that drift might play a more important role than generally assumed. We analysed the dynamics of different types of turnovers using individual‐based simulations and show that when mediated by genetic drift, turnovers are usually easier to achieve than substitutions at neutral markers, but that their dynamics and relative likelihoods vary with the type of the resident and emergent sex chromosome system (XY and/or ZW) and the dominance relationships among the sex‐determining factors. Focusing on turnovers driven by epistatically dominant mutations, we find that drift‐mediated turnovers that preserve the heterogamety pattern are 2–4× more likely than those along which the heterogametic sex changes. This ratio nevertheless decreases along with effective population size and can even reverse in case of extreme polygyny. This can be attributed to a ‘drift‐induced’ selective force, known to influence transitions between male and female heterogamety, but which according to our study does not affect turnovers that preserve the heterogametic sex.</description><subject>Chromosomes</subject><subject>Genetic drift</subject><subject>individual‐based simulations</subject><subject>Mutation</subject><subject>Polygyny</subject><subject>Population number</subject><subject>quantiNemo</subject><subject>Sex</subject><subject>Sex chromosomes</subject><subject>sex determination</subject><subject>Sex ratio</subject><subject>sex ratio selection</subject><subject>transitions</subject><issn>1010-061X</issn><issn>1420-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgSgUBl4ARWKBIe3xNQkDElTlpkoMgMQWubYDqZK42AnQt8eQwoDEWXyGT798foQOMIxwmPHCzEeYUio20A5mBOIMA94MO2CIQeCnAdr1fgGABeN8Gw1IlhFKmNhBZ_fmI1IvztbW29pEbeca-2acj2Sjo2fTmLZUkXZl0Z5GMvJl3VWyLW0T-bbTqz20VcjKm_31O0SPl9OHyXU8u7u6mZzPYsU4E7EQqWTAhUwzA0KojGAlUyg01sKklBUUCMcZCM4IZYnRWmngBFLCuQQ-p0N03OcunX3tjG_zuvTKVJVsjO18ToAnjCYiywI9-kMXNhwVfhdUuFsInPCgTnqlnPXemSJfurKWbpVjyL9KzUOp-XepwR6uE7t5bfSv_GkxgHEP3svKrP5Pym-nF33kJ9UWfds</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Saunders, Paul A.</creator><creator>Neuenschwander, Samuel</creator><creator>Perrin, Nicolas</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7756-6323</orcidid><orcidid>https://orcid.org/0000-0002-6282-0472</orcidid></search><sort><creationdate>201809</creationdate><title>Sex chromosome turnovers and genetic drift: a simulation study</title><author>Saunders, Paul A. ; Neuenschwander, Samuel ; Perrin, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4546-668a4056a89e066c921ca80fd1d6e834f30251906542347eddcd05208255a05b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chromosomes</topic><topic>Genetic drift</topic><topic>individual‐based simulations</topic><topic>Mutation</topic><topic>Polygyny</topic><topic>Population number</topic><topic>quantiNemo</topic><topic>Sex</topic><topic>Sex chromosomes</topic><topic>sex determination</topic><topic>Sex ratio</topic><topic>sex ratio selection</topic><topic>transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saunders, Paul A.</creatorcontrib><creatorcontrib>Neuenschwander, Samuel</creatorcontrib><creatorcontrib>Perrin, Nicolas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of evolutionary biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saunders, Paul A.</au><au>Neuenschwander, Samuel</au><au>Perrin, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sex chromosome turnovers and genetic drift: a simulation study</atitle><jtitle>Journal of evolutionary biology</jtitle><addtitle>J Evol Biol</addtitle><date>2018-09</date><risdate>2018</risdate><volume>31</volume><issue>9</issue><spage>1413</spage><epage>1419</epage><pages>1413-1419</pages><issn>1010-061X</issn><eissn>1420-9101</eissn><abstract>The recent advances of new genomic technologies have enabled the identification and characterization of sex chromosomes in an increasing number of nonmodel species, revealing that many plants and animals undergo frequent sex chromosome turnovers. What evolutionary forces drive these turnovers remains poorly understood, but it was recently proposed that drift might play a more important role than generally assumed. We analysed the dynamics of different types of turnovers using individual‐based simulations and show that when mediated by genetic drift, turnovers are usually easier to achieve than substitutions at neutral markers, but that their dynamics and relative likelihoods vary with the type of the resident and emergent sex chromosome system (XY and/or ZW) and the dominance relationships among the sex‐determining factors. Focusing on turnovers driven by epistatically dominant mutations, we find that drift‐mediated turnovers that preserve the heterogamety pattern are 2–4× more likely than those along which the heterogametic sex changes. This ratio nevertheless decreases along with effective population size and can even reverse in case of extreme polygyny. This can be attributed to a ‘drift‐induced’ selective force, known to influence transitions between male and female heterogamety, but which according to our study does not affect turnovers that preserve the heterogametic sex.</abstract><cop>Switzerland</cop><pub>Blackwell Publishing Ltd</pub><pmid>29923246</pmid><doi>10.1111/jeb.13336</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7756-6323</orcidid><orcidid>https://orcid.org/0000-0002-6282-0472</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1010-061X |
ispartof | Journal of evolutionary biology, 2018-09, Vol.31 (9), p.1413-1419 |
issn | 1010-061X 1420-9101 |
language | eng |
recordid | cdi_proquest_miscellaneous_2057437699 |
source | Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Chromosomes Genetic drift individual‐based simulations Mutation Polygyny Population number quantiNemo Sex Sex chromosomes sex determination Sex ratio sex ratio selection transitions |
title | Sex chromosome turnovers and genetic drift: a simulation study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A44%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sex%20chromosome%20turnovers%20and%20genetic%20drift:%20a%20simulation%20study&rft.jtitle=Journal%20of%20evolutionary%20biology&rft.au=Saunders,%20Paul%20A.&rft.date=2018-09&rft.volume=31&rft.issue=9&rft.spage=1413&rft.epage=1419&rft.pages=1413-1419&rft.issn=1010-061X&rft.eissn=1420-9101&rft_id=info:doi/10.1111/jeb.13336&rft_dat=%3Cproquest_cross%3E2099266175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099266175&rft_id=info:pmid/29923246&rfr_iscdi=true |