Modelling Vasorelaxant Activity of Some Drugs/Drug Candidates Using Artificial Neural Networks

Cardiovascular diseases are the most common health problems in developed and developing societies and the vasodilating agents are one of the medicinal groups to improve the life style of the patients suffering from the cardiovascular diseases. To study the quantitative structure-activity relationshi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmacology & toxicology 2007-07, Vol.2 (5), p.411-426
Hauptverfasser: Soltani, S., ., H. Babaei, ., K. Asadpour Zeynali, ., A. Jouyban
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue 5
container_start_page 411
container_title Journal of pharmacology & toxicology
container_volume 2
creator Soltani, S.
., H. Babaei
., K. Asadpour Zeynali
., A. Jouyban
description Cardiovascular diseases are the most common health problems in developed and developing societies and the vasodilating agents are one of the medicinal groups to improve the life style of the patients suffering from the cardiovascular diseases. To study the quantitative structure-activity relationship of a number of pharmacological agents, the published data sets containing more than 10 vasodilating agents assessed on rat thoracic aorta, were collected from the literature. Different physico-chemical and structural descriptors of the compounds were computed using HyperChem registered (12 descriptors) and Dragon software (1479 descriptors). The more suitable descriptors (Jhetv, Lop, SP20, RDF020u, RDF030m and R6m) were selected using a combination of linear regression and genetic algorithm methods. The artificial neural networks method was used for modelling-log of vasodilating activity (pECSO) using selected descriptors. The statistical analyses were performed using SPSS software and the average percentage deviation between calculated and observed values for predicted data points studied in this work was 15.0 ( plus or minus 18.8).
doi_str_mv 10.3923/jpt.2007.411.426
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20571624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20571624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1616-83a534410f1a3faeec76a564a58ccb7f19c54407e87674c964ec82d6d7f412613</originalsourceid><addsrcrecordid>eNotkD1PwzAYhD2ARCnsjJ7YmvordjJW5aNIBQYoYsIyjl25pHGxHaD_Hoey3C33vrp7ALjAqKA1odPNLhUEIVEwjAtG-BEY4QrzCav56wk4jXGDUCkQrUfg7d43pm1dt4YvKvpgWvWjugRnOrkvl_bQW_jktwZehX4dp4PCueoa16hkIlzF4XIWkrNOO9XCB9OHP0vfPnzEM3BsVRvN-b-Pwerm-nm-mCwfb-_ms-VEY56LVVSVlDGMLFbUKmO04KrkTJWV1u_C4lqXjCFhKsEF0zVnRlek4Y2wDBOO6RhcHv7ugv_sTUxy66LOw1RnfB8lyXsxJywH0SGog48xGCt3wW1V2EuM5ABPZnhygCczPJnh0V8pQGWd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20571624</pqid></control><display><type>article</type><title>Modelling Vasorelaxant Activity of Some Drugs/Drug Candidates Using Artificial Neural Networks</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><source>Science Alert</source><creator>Soltani, S. ; ., H. Babaei ; ., K. Asadpour Zeynali ; ., A. Jouyban</creator><creatorcontrib>Soltani, S. ; ., H. Babaei ; ., K. Asadpour Zeynali ; ., A. Jouyban</creatorcontrib><description>Cardiovascular diseases are the most common health problems in developed and developing societies and the vasodilating agents are one of the medicinal groups to improve the life style of the patients suffering from the cardiovascular diseases. To study the quantitative structure-activity relationship of a number of pharmacological agents, the published data sets containing more than 10 vasodilating agents assessed on rat thoracic aorta, were collected from the literature. Different physico-chemical and structural descriptors of the compounds were computed using HyperChem registered (12 descriptors) and Dragon software (1479 descriptors). The more suitable descriptors (Jhetv, Lop, SP20, RDF020u, RDF030m and R6m) were selected using a combination of linear regression and genetic algorithm methods. The artificial neural networks method was used for modelling-log of vasodilating activity (pECSO) using selected descriptors. The statistical analyses were performed using SPSS software and the average percentage deviation between calculated and observed values for predicted data points studied in this work was 15.0 ( plus or minus 18.8).</description><identifier>ISSN: 1816-496X</identifier><identifier>DOI: 10.3923/jpt.2007.411.426</identifier><language>eng</language><ispartof>Journal of pharmacology &amp; toxicology, 2007-07, Vol.2 (5), p.411-426</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1616-83a534410f1a3faeec76a564a58ccb7f19c54407e87674c964ec82d6d7f412613</citedby><cites>FETCH-LOGICAL-c1616-83a534410f1a3faeec76a564a58ccb7f19c54407e87674c964ec82d6d7f412613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4124,27924,27925</link.rule.ids></links><search><creatorcontrib>Soltani, S.</creatorcontrib><creatorcontrib>., H. Babaei</creatorcontrib><creatorcontrib>., K. Asadpour Zeynali</creatorcontrib><creatorcontrib>., A. Jouyban</creatorcontrib><title>Modelling Vasorelaxant Activity of Some Drugs/Drug Candidates Using Artificial Neural Networks</title><title>Journal of pharmacology &amp; toxicology</title><description>Cardiovascular diseases are the most common health problems in developed and developing societies and the vasodilating agents are one of the medicinal groups to improve the life style of the patients suffering from the cardiovascular diseases. To study the quantitative structure-activity relationship of a number of pharmacological agents, the published data sets containing more than 10 vasodilating agents assessed on rat thoracic aorta, were collected from the literature. Different physico-chemical and structural descriptors of the compounds were computed using HyperChem registered (12 descriptors) and Dragon software (1479 descriptors). The more suitable descriptors (Jhetv, Lop, SP20, RDF020u, RDF030m and R6m) were selected using a combination of linear regression and genetic algorithm methods. The artificial neural networks method was used for modelling-log of vasodilating activity (pECSO) using selected descriptors. The statistical analyses were performed using SPSS software and the average percentage deviation between calculated and observed values for predicted data points studied in this work was 15.0 ( plus or minus 18.8).</description><issn>1816-496X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAYhD2ARCnsjJ7YmvordjJW5aNIBQYoYsIyjl25pHGxHaD_Hoey3C33vrp7ALjAqKA1odPNLhUEIVEwjAtG-BEY4QrzCav56wk4jXGDUCkQrUfg7d43pm1dt4YvKvpgWvWjugRnOrkvl_bQW_jktwZehX4dp4PCueoa16hkIlzF4XIWkrNOO9XCB9OHP0vfPnzEM3BsVRvN-b-Pwerm-nm-mCwfb-_ms-VEY56LVVSVlDGMLFbUKmO04KrkTJWV1u_C4lqXjCFhKsEF0zVnRlek4Y2wDBOO6RhcHv7ugv_sTUxy66LOw1RnfB8lyXsxJywH0SGog48xGCt3wW1V2EuM5ABPZnhygCczPJnh0V8pQGWd</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Soltani, S.</creator><creator>., H. Babaei</creator><creator>., K. Asadpour Zeynali</creator><creator>., A. Jouyban</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20070701</creationdate><title>Modelling Vasorelaxant Activity of Some Drugs/Drug Candidates Using Artificial Neural Networks</title><author>Soltani, S. ; ., H. Babaei ; ., K. Asadpour Zeynali ; ., A. Jouyban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1616-83a534410f1a3faeec76a564a58ccb7f19c54407e87674c964ec82d6d7f412613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Soltani, S.</creatorcontrib><creatorcontrib>., H. Babaei</creatorcontrib><creatorcontrib>., K. Asadpour Zeynali</creatorcontrib><creatorcontrib>., A. Jouyban</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of pharmacology &amp; toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soltani, S.</au><au>., H. Babaei</au><au>., K. Asadpour Zeynali</au><au>., A. Jouyban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling Vasorelaxant Activity of Some Drugs/Drug Candidates Using Artificial Neural Networks</atitle><jtitle>Journal of pharmacology &amp; toxicology</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>2</volume><issue>5</issue><spage>411</spage><epage>426</epage><pages>411-426</pages><issn>1816-496X</issn><abstract>Cardiovascular diseases are the most common health problems in developed and developing societies and the vasodilating agents are one of the medicinal groups to improve the life style of the patients suffering from the cardiovascular diseases. To study the quantitative structure-activity relationship of a number of pharmacological agents, the published data sets containing more than 10 vasodilating agents assessed on rat thoracic aorta, were collected from the literature. Different physico-chemical and structural descriptors of the compounds were computed using HyperChem registered (12 descriptors) and Dragon software (1479 descriptors). The more suitable descriptors (Jhetv, Lop, SP20, RDF020u, RDF030m and R6m) were selected using a combination of linear regression and genetic algorithm methods. The artificial neural networks method was used for modelling-log of vasodilating activity (pECSO) using selected descriptors. The statistical analyses were performed using SPSS software and the average percentage deviation between calculated and observed values for predicted data points studied in this work was 15.0 ( plus or minus 18.8).</abstract><doi>10.3923/jpt.2007.411.426</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1816-496X
ispartof Journal of pharmacology & toxicology, 2007-07, Vol.2 (5), p.411-426
issn 1816-496X
language eng
recordid cdi_proquest_miscellaneous_20571624
source EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry; Science Alert
title Modelling Vasorelaxant Activity of Some Drugs/Drug Candidates Using Artificial Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20Vasorelaxant%20Activity%20of%20Some%20Drugs/Drug%20Candidates%20Using%20Artificial%20Neural%20Networks&rft.jtitle=Journal%20of%20pharmacology%20&%20toxicology&rft.au=Soltani,%20S.&rft.date=2007-07-01&rft.volume=2&rft.issue=5&rft.spage=411&rft.epage=426&rft.pages=411-426&rft.issn=1816-496X&rft_id=info:doi/10.3923/jpt.2007.411.426&rft_dat=%3Cproquest_cross%3E20571624%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20571624&rft_id=info:pmid/&rfr_iscdi=true