Sodiation and Desodiation via Helical Phosphorus Intermediates in High-Capacity Anodes for Sodium-Ion Batteries

Na-ion batteries are promising alternatives to Li-ion systems for electrochemical energy storage because of the higher natural abundance and widespread distribution of Na compared to Li. High capacity anode materials, such as phosphorus, have been explored to realize Na-ion battery technologies that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-06, Vol.140 (25), p.7994-8004
Hauptverfasser: Marbella, Lauren E, Evans, Matthew L, Groh, Matthias F, Nelson, Joseph, Griffith, Kent J, Morris, Andrew J, Grey, Clare P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8004
container_issue 25
container_start_page 7994
container_title Journal of the American Chemical Society
container_volume 140
creator Marbella, Lauren E
Evans, Matthew L
Groh, Matthias F
Nelson, Joseph
Griffith, Kent J
Morris, Andrew J
Grey, Clare P
description Na-ion batteries are promising alternatives to Li-ion systems for electrochemical energy storage because of the higher natural abundance and widespread distribution of Na compared to Li. High capacity anode materials, such as phosphorus, have been explored to realize Na-ion battery technologies that offer comparable performances to their Li-ion counterparts. While P anodes provide unparalleled capacities, the mechanism of sodiation and desodiation is not well-understood, limiting further optimization. Here, we use a combined experimental and theoretical approach to provide molecular-level insight into the (de)­sodiation pathways in black P anodes for sodium-ion batteries. A determination of the P binding in these materials was achieved by comparing to structure models created via species swapping, ab initio random structure searching, and a genetic algorithm. During sodiation, analysis of 31P chemical shift anisotropies in NMR data reveals P helices and P at the end of chains as the primary structural components in amorphous Na x P phases. X-ray diffraction data in conjunction with variable field 23Na magic-angle spinning NMR support the formation of a new Na3P crystal structure (predicted using density-functional theory) on sodiation. During desodiation, P helices are re-formed in the amorphous intermediates, albeit with increased disorder, yet emphasizing the pervasive nature of this motif. The pristine material is not re-formed at the end of desodiation and may be linked to the irreversibility observed in the Na–P system.
doi_str_mv 10.1021/jacs.8b04183
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2057133778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057133778</sourcerecordid><originalsourceid>FETCH-LOGICAL-a465t-e23e82e1ed053397dee5e3af603974779964400737269af371b0d9ee6ea3b1e23</originalsourceid><addsrcrecordid>eNptkM1LwzAchoMobk5vniVHD3bmo03a49zUDQYK6rmk7a8uo21q0gr7703ZnBdP4Q3P-4S8CF1TMqWE0futyt00zkhIY36CxjRiJIgoE6doTAhhgYwFH6EL57Y-hiym52jEkoQKScIxMm-m0KrTpsGqKfAC3DF_a4WXUOlcVfh1Y1y7MbZ3eNV0YGsYKHBYN3ipPzfBXLUq190OzxpT-PvSWDyo-zpYedeD6nxLg7tEZ6WqHFwdzgn6eHp8ny-D9cvzaj5bByoUURcA4xAzoFCQiPNEFgARcFUK4kMoZZKIMCREcslEokouaUaKBECA4hn17Qm63Xtba756cF1aa5dDVakGTO9SRiJJOZcy9ujdHs2tcc5CmbZW18ruUkrSYeJ0mDg9TOzxm4O5z_wMR_h307-nh9bW9LbxH_3f9QOOGITg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057133778</pqid></control><display><type>article</type><title>Sodiation and Desodiation via Helical Phosphorus Intermediates in High-Capacity Anodes for Sodium-Ion Batteries</title><source>ACS Publications</source><creator>Marbella, Lauren E ; Evans, Matthew L ; Groh, Matthias F ; Nelson, Joseph ; Griffith, Kent J ; Morris, Andrew J ; Grey, Clare P</creator><creatorcontrib>Marbella, Lauren E ; Evans, Matthew L ; Groh, Matthias F ; Nelson, Joseph ; Griffith, Kent J ; Morris, Andrew J ; Grey, Clare P</creatorcontrib><description>Na-ion batteries are promising alternatives to Li-ion systems for electrochemical energy storage because of the higher natural abundance and widespread distribution of Na compared to Li. High capacity anode materials, such as phosphorus, have been explored to realize Na-ion battery technologies that offer comparable performances to their Li-ion counterparts. While P anodes provide unparalleled capacities, the mechanism of sodiation and desodiation is not well-understood, limiting further optimization. Here, we use a combined experimental and theoretical approach to provide molecular-level insight into the (de)­sodiation pathways in black P anodes for sodium-ion batteries. A determination of the P binding in these materials was achieved by comparing to structure models created via species swapping, ab initio random structure searching, and a genetic algorithm. During sodiation, analysis of 31P chemical shift anisotropies in NMR data reveals P helices and P at the end of chains as the primary structural components in amorphous Na x P phases. X-ray diffraction data in conjunction with variable field 23Na magic-angle spinning NMR support the formation of a new Na3P crystal structure (predicted using density-functional theory) on sodiation. During desodiation, P helices are re-formed in the amorphous intermediates, albeit with increased disorder, yet emphasizing the pervasive nature of this motif. The pristine material is not re-formed at the end of desodiation and may be linked to the irreversibility observed in the Na–P system.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b04183</identifier><identifier>PMID: 29916704</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2018-06, Vol.140 (25), p.7994-8004</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a465t-e23e82e1ed053397dee5e3af603974779964400737269af371b0d9ee6ea3b1e23</citedby><cites>FETCH-LOGICAL-a465t-e23e82e1ed053397dee5e3af603974779964400737269af371b0d9ee6ea3b1e23</cites><orcidid>0000-0001-7453-5698 ; 0000-0001-5572-192X ; 0000-0002-8096-906X ; 0000-0002-1182-9098 ; 0000-0003-1639-3913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.8b04183$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.8b04183$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29916704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marbella, Lauren E</creatorcontrib><creatorcontrib>Evans, Matthew L</creatorcontrib><creatorcontrib>Groh, Matthias F</creatorcontrib><creatorcontrib>Nelson, Joseph</creatorcontrib><creatorcontrib>Griffith, Kent J</creatorcontrib><creatorcontrib>Morris, Andrew J</creatorcontrib><creatorcontrib>Grey, Clare P</creatorcontrib><title>Sodiation and Desodiation via Helical Phosphorus Intermediates in High-Capacity Anodes for Sodium-Ion Batteries</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Na-ion batteries are promising alternatives to Li-ion systems for electrochemical energy storage because of the higher natural abundance and widespread distribution of Na compared to Li. High capacity anode materials, such as phosphorus, have been explored to realize Na-ion battery technologies that offer comparable performances to their Li-ion counterparts. While P anodes provide unparalleled capacities, the mechanism of sodiation and desodiation is not well-understood, limiting further optimization. Here, we use a combined experimental and theoretical approach to provide molecular-level insight into the (de)­sodiation pathways in black P anodes for sodium-ion batteries. A determination of the P binding in these materials was achieved by comparing to structure models created via species swapping, ab initio random structure searching, and a genetic algorithm. During sodiation, analysis of 31P chemical shift anisotropies in NMR data reveals P helices and P at the end of chains as the primary structural components in amorphous Na x P phases. X-ray diffraction data in conjunction with variable field 23Na magic-angle spinning NMR support the formation of a new Na3P crystal structure (predicted using density-functional theory) on sodiation. During desodiation, P helices are re-formed in the amorphous intermediates, albeit with increased disorder, yet emphasizing the pervasive nature of this motif. The pristine material is not re-formed at the end of desodiation and may be linked to the irreversibility observed in the Na–P system.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkM1LwzAchoMobk5vniVHD3bmo03a49zUDQYK6rmk7a8uo21q0gr7703ZnBdP4Q3P-4S8CF1TMqWE0futyt00zkhIY36CxjRiJIgoE6doTAhhgYwFH6EL57Y-hiym52jEkoQKScIxMm-m0KrTpsGqKfAC3DF_a4WXUOlcVfh1Y1y7MbZ3eNV0YGsYKHBYN3ipPzfBXLUq190OzxpT-PvSWDyo-zpYedeD6nxLg7tEZ6WqHFwdzgn6eHp8ny-D9cvzaj5bByoUURcA4xAzoFCQiPNEFgARcFUK4kMoZZKIMCREcslEokouaUaKBECA4hn17Qm63Xtba756cF1aa5dDVakGTO9SRiJJOZcy9ujdHs2tcc5CmbZW18ruUkrSYeJ0mDg9TOzxm4O5z_wMR_h307-nh9bW9LbxH_3f9QOOGITg</recordid><startdate>20180627</startdate><enddate>20180627</enddate><creator>Marbella, Lauren E</creator><creator>Evans, Matthew L</creator><creator>Groh, Matthias F</creator><creator>Nelson, Joseph</creator><creator>Griffith, Kent J</creator><creator>Morris, Andrew J</creator><creator>Grey, Clare P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7453-5698</orcidid><orcidid>https://orcid.org/0000-0001-5572-192X</orcidid><orcidid>https://orcid.org/0000-0002-8096-906X</orcidid><orcidid>https://orcid.org/0000-0002-1182-9098</orcidid><orcidid>https://orcid.org/0000-0003-1639-3913</orcidid></search><sort><creationdate>20180627</creationdate><title>Sodiation and Desodiation via Helical Phosphorus Intermediates in High-Capacity Anodes for Sodium-Ion Batteries</title><author>Marbella, Lauren E ; Evans, Matthew L ; Groh, Matthias F ; Nelson, Joseph ; Griffith, Kent J ; Morris, Andrew J ; Grey, Clare P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a465t-e23e82e1ed053397dee5e3af603974779964400737269af371b0d9ee6ea3b1e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marbella, Lauren E</creatorcontrib><creatorcontrib>Evans, Matthew L</creatorcontrib><creatorcontrib>Groh, Matthias F</creatorcontrib><creatorcontrib>Nelson, Joseph</creatorcontrib><creatorcontrib>Griffith, Kent J</creatorcontrib><creatorcontrib>Morris, Andrew J</creatorcontrib><creatorcontrib>Grey, Clare P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marbella, Lauren E</au><au>Evans, Matthew L</au><au>Groh, Matthias F</au><au>Nelson, Joseph</au><au>Griffith, Kent J</au><au>Morris, Andrew J</au><au>Grey, Clare P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodiation and Desodiation via Helical Phosphorus Intermediates in High-Capacity Anodes for Sodium-Ion Batteries</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-06-27</date><risdate>2018</risdate><volume>140</volume><issue>25</issue><spage>7994</spage><epage>8004</epage><pages>7994-8004</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Na-ion batteries are promising alternatives to Li-ion systems for electrochemical energy storage because of the higher natural abundance and widespread distribution of Na compared to Li. High capacity anode materials, such as phosphorus, have been explored to realize Na-ion battery technologies that offer comparable performances to their Li-ion counterparts. While P anodes provide unparalleled capacities, the mechanism of sodiation and desodiation is not well-understood, limiting further optimization. Here, we use a combined experimental and theoretical approach to provide molecular-level insight into the (de)­sodiation pathways in black P anodes for sodium-ion batteries. A determination of the P binding in these materials was achieved by comparing to structure models created via species swapping, ab initio random structure searching, and a genetic algorithm. During sodiation, analysis of 31P chemical shift anisotropies in NMR data reveals P helices and P at the end of chains as the primary structural components in amorphous Na x P phases. X-ray diffraction data in conjunction with variable field 23Na magic-angle spinning NMR support the formation of a new Na3P crystal structure (predicted using density-functional theory) on sodiation. During desodiation, P helices are re-formed in the amorphous intermediates, albeit with increased disorder, yet emphasizing the pervasive nature of this motif. The pristine material is not re-formed at the end of desodiation and may be linked to the irreversibility observed in the Na–P system.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29916704</pmid><doi>10.1021/jacs.8b04183</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7453-5698</orcidid><orcidid>https://orcid.org/0000-0001-5572-192X</orcidid><orcidid>https://orcid.org/0000-0002-8096-906X</orcidid><orcidid>https://orcid.org/0000-0002-1182-9098</orcidid><orcidid>https://orcid.org/0000-0003-1639-3913</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2018-06, Vol.140 (25), p.7994-8004
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2057133778
source ACS Publications
title Sodiation and Desodiation via Helical Phosphorus Intermediates in High-Capacity Anodes for Sodium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodiation%20and%20Desodiation%20via%20Helical%20Phosphorus%20Intermediates%20in%20High-Capacity%20Anodes%20for%20Sodium-Ion%20Batteries&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Marbella,%20Lauren%20E&rft.date=2018-06-27&rft.volume=140&rft.issue=25&rft.spage=7994&rft.epage=8004&rft.pages=7994-8004&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b04183&rft_dat=%3Cproquest_cross%3E2057133778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057133778&rft_id=info:pmid/29916704&rfr_iscdi=true