Vapour density field of mixed-phase clouds

This work presents a theoretical model based on the electrostatic image charges method to calculate the steady-state water vapour density field for a population of supercooled cloud droplets and ice crystals. The model allows a determination of the vapour density among the cloud droplets and ice par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric research 2008-04, Vol.88 (1), p.56-65
Hauptverfasser: Castellano, Nesvit E., Ávila, Eldo E., Saunders, Clive P.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 56
container_title Atmospheric research
container_volume 88
creator Castellano, Nesvit E.
Ávila, Eldo E.
Saunders, Clive P.R.
description This work presents a theoretical model based on the electrostatic image charges method to calculate the steady-state water vapour density field for a population of supercooled cloud droplets and ice crystals. The model allows a determination of the vapour density among the cloud droplets and ice particles and obtains a representative vapour density of the system which is called the ambient vapour density of the mixed-phase cloud. The results show that the ambient vapour density is close to the saturated value over water in clouds where the cloud droplet concentration is much higher than the ice crystal concentration and close to the ice saturation value in glaciated clouds. A parameterization of the ambient vapour density is given as a function of the sizes and concentrations of the cloud droplets and ice crystals. In addition, the model is used to study the diffusional growth rate of ice crystals immersed in a mixed cloud. The results indicate that the growth of an ice crystal can be reduced by the presence of neighbouring crystals. A mass growth rate equation for diffusional growth was found, which incorporates effects of the ice crystal size, the cloud droplet radius, liquid water content, and ice crystal and droplet concentrations. These studies are of important to considerations in thunderstorm electrification processes, where the mechanism of charge transfer between colliding ice particles and graupel is influenced by growth rate.
doi_str_mv 10.1016/j.atmosres.2007.10.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20567737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169809507001718</els_id><sourcerecordid>14874063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-ad597ea42937f7337e524493123236286717388050aa796cf7aadb715be28f143</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRsFb_gmSjCyFxXsmd7JTiCwpu1O0wndzglLycScT-e6e0uu3qwuE798BHyCWjGaOsuF1nZmz74DFknFKIYUYpPyIzpkCkXJX5MZlFsEwVLfNTchbCmlKaU1nOyM2HGfrJJxV2wY2bpHbYVElfJ637wSodPk3AxDb9VIVzclKbJuDF_s7J--PD2-I5Xb4-vSzul6mVVI6pqfIS0EheCqhBCMCcS1kKxgUXBVcFMBBKxX1joCxsDcZUK2D5CrmqmRRzcr37O_j-a8Iw6tYFi01jOuynoDnNCwABB0EmFUhaiAgWO9D6PkRRtR68a43faEb11qFe6z-Heutwm0eHsXi1XzDBmqb2prMu_Lc5ZaBAFZG723EYvXw79DpYh53Fynm0o656d2jqF9sQiJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14874063</pqid></control><display><type>article</type><title>Vapour density field of mixed-phase clouds</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Castellano, Nesvit E. ; Ávila, Eldo E. ; Saunders, Clive P.R.</creator><creatorcontrib>Castellano, Nesvit E. ; Ávila, Eldo E. ; Saunders, Clive P.R.</creatorcontrib><description>This work presents a theoretical model based on the electrostatic image charges method to calculate the steady-state water vapour density field for a population of supercooled cloud droplets and ice crystals. The model allows a determination of the vapour density among the cloud droplets and ice particles and obtains a representative vapour density of the system which is called the ambient vapour density of the mixed-phase cloud. The results show that the ambient vapour density is close to the saturated value over water in clouds where the cloud droplet concentration is much higher than the ice crystal concentration and close to the ice saturation value in glaciated clouds. A parameterization of the ambient vapour density is given as a function of the sizes and concentrations of the cloud droplets and ice crystals. In addition, the model is used to study the diffusional growth rate of ice crystals immersed in a mixed cloud. The results indicate that the growth of an ice crystal can be reduced by the presence of neighbouring crystals. A mass growth rate equation for diffusional growth was found, which incorporates effects of the ice crystal size, the cloud droplet radius, liquid water content, and ice crystal and droplet concentrations. These studies are of important to considerations in thunderstorm electrification processes, where the mechanism of charge transfer between colliding ice particles and graupel is influenced by growth rate.</description><identifier>ISSN: 0169-8095</identifier><identifier>EISSN: 1873-2895</identifier><identifier>DOI: 10.1016/j.atmosres.2007.10.002</identifier><identifier>CODEN: ATREEW</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Ambient vapour density ; Cloud physics ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Ice particle growth ; Image charges ; Meteorology ; Mixed-phase cloud ; Vapour diffusion</subject><ispartof>Atmospheric research, 2008-04, Vol.88 (1), p.56-65</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-ad597ea42937f7337e524493123236286717388050aa796cf7aadb715be28f143</citedby><cites>FETCH-LOGICAL-c404t-ad597ea42937f7337e524493123236286717388050aa796cf7aadb715be28f143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.atmosres.2007.10.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20178786$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Castellano, Nesvit E.</creatorcontrib><creatorcontrib>Ávila, Eldo E.</creatorcontrib><creatorcontrib>Saunders, Clive P.R.</creatorcontrib><title>Vapour density field of mixed-phase clouds</title><title>Atmospheric research</title><description>This work presents a theoretical model based on the electrostatic image charges method to calculate the steady-state water vapour density field for a population of supercooled cloud droplets and ice crystals. The model allows a determination of the vapour density among the cloud droplets and ice particles and obtains a representative vapour density of the system which is called the ambient vapour density of the mixed-phase cloud. The results show that the ambient vapour density is close to the saturated value over water in clouds where the cloud droplet concentration is much higher than the ice crystal concentration and close to the ice saturation value in glaciated clouds. A parameterization of the ambient vapour density is given as a function of the sizes and concentrations of the cloud droplets and ice crystals. In addition, the model is used to study the diffusional growth rate of ice crystals immersed in a mixed cloud. The results indicate that the growth of an ice crystal can be reduced by the presence of neighbouring crystals. A mass growth rate equation for diffusional growth was found, which incorporates effects of the ice crystal size, the cloud droplet radius, liquid water content, and ice crystal and droplet concentrations. These studies are of important to considerations in thunderstorm electrification processes, where the mechanism of charge transfer between colliding ice particles and graupel is influenced by growth rate.</description><subject>Ambient vapour density</subject><subject>Cloud physics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Ice particle growth</subject><subject>Image charges</subject><subject>Meteorology</subject><subject>Mixed-phase cloud</subject><subject>Vapour diffusion</subject><issn>0169-8095</issn><issn>1873-2895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRsFb_gmSjCyFxXsmd7JTiCwpu1O0wndzglLycScT-e6e0uu3qwuE798BHyCWjGaOsuF1nZmz74DFknFKIYUYpPyIzpkCkXJX5MZlFsEwVLfNTchbCmlKaU1nOyM2HGfrJJxV2wY2bpHbYVElfJ637wSodPk3AxDb9VIVzclKbJuDF_s7J--PD2-I5Xb4-vSzul6mVVI6pqfIS0EheCqhBCMCcS1kKxgUXBVcFMBBKxX1joCxsDcZUK2D5CrmqmRRzcr37O_j-a8Iw6tYFi01jOuynoDnNCwABB0EmFUhaiAgWO9D6PkRRtR68a43faEb11qFe6z-Heutwm0eHsXi1XzDBmqb2prMu_Lc5ZaBAFZG723EYvXw79DpYh53Fynm0o656d2jqF9sQiJI</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Castellano, Nesvit E.</creator><creator>Ávila, Eldo E.</creator><creator>Saunders, Clive P.R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20080401</creationdate><title>Vapour density field of mixed-phase clouds</title><author>Castellano, Nesvit E. ; Ávila, Eldo E. ; Saunders, Clive P.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-ad597ea42937f7337e524493123236286717388050aa796cf7aadb715be28f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Ambient vapour density</topic><topic>Cloud physics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Ice particle growth</topic><topic>Image charges</topic><topic>Meteorology</topic><topic>Mixed-phase cloud</topic><topic>Vapour diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castellano, Nesvit E.</creatorcontrib><creatorcontrib>Ávila, Eldo E.</creatorcontrib><creatorcontrib>Saunders, Clive P.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Atmospheric research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castellano, Nesvit E.</au><au>Ávila, Eldo E.</au><au>Saunders, Clive P.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vapour density field of mixed-phase clouds</atitle><jtitle>Atmospheric research</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>88</volume><issue>1</issue><spage>56</spage><epage>65</epage><pages>56-65</pages><issn>0169-8095</issn><eissn>1873-2895</eissn><coden>ATREEW</coden><abstract>This work presents a theoretical model based on the electrostatic image charges method to calculate the steady-state water vapour density field for a population of supercooled cloud droplets and ice crystals. The model allows a determination of the vapour density among the cloud droplets and ice particles and obtains a representative vapour density of the system which is called the ambient vapour density of the mixed-phase cloud. The results show that the ambient vapour density is close to the saturated value over water in clouds where the cloud droplet concentration is much higher than the ice crystal concentration and close to the ice saturation value in glaciated clouds. A parameterization of the ambient vapour density is given as a function of the sizes and concentrations of the cloud droplets and ice crystals. In addition, the model is used to study the diffusional growth rate of ice crystals immersed in a mixed cloud. The results indicate that the growth of an ice crystal can be reduced by the presence of neighbouring crystals. A mass growth rate equation for diffusional growth was found, which incorporates effects of the ice crystal size, the cloud droplet radius, liquid water content, and ice crystal and droplet concentrations. These studies are of important to considerations in thunderstorm electrification processes, where the mechanism of charge transfer between colliding ice particles and graupel is influenced by growth rate.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.atmosres.2007.10.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-8095
ispartof Atmospheric research, 2008-04, Vol.88 (1), p.56-65
issn 0169-8095
1873-2895
language eng
recordid cdi_proquest_miscellaneous_20567737
source ScienceDirect Journals (5 years ago - present)
subjects Ambient vapour density
Cloud physics
Earth, ocean, space
Exact sciences and technology
External geophysics
Ice particle growth
Image charges
Meteorology
Mixed-phase cloud
Vapour diffusion
title Vapour density field of mixed-phase clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vapour%20density%20field%20of%20mixed-phase%20clouds&rft.jtitle=Atmospheric%20research&rft.au=Castellano,%20Nesvit%20E.&rft.date=2008-04-01&rft.volume=88&rft.issue=1&rft.spage=56&rft.epage=65&rft.pages=56-65&rft.issn=0169-8095&rft.eissn=1873-2895&rft.coden=ATREEW&rft_id=info:doi/10.1016/j.atmosres.2007.10.002&rft_dat=%3Cproquest_cross%3E14874063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14874063&rft_id=info:pmid/&rft_els_id=S0169809507001718&rfr_iscdi=true