Astronomical calibration of the Paleocene time

The first complete cyclic sedimentary successions for the early Paleogene from drilling multiple holes have been retrieved during two ODP expeditions: Leg 198 (Shatsky Rise, NW Pacific Ocean) and Leg 208 (Walvis Ridge, SE Atlantic Ocean). These new records allow us to construct a comprehensive astro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Palaeogeography, palaeoclimatology, palaeoecology palaeoclimatology, palaeoecology, 2008-02, Vol.257 (4), p.377-403
Hauptverfasser: Westerhold, Thomas, Röhl, Ursula, Raffi, Isabella, Fornaciari, Eliana, Monechi, Simonetta, Reale, Viviana, Bowles, Julie, Evans, Helen F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 403
container_issue 4
container_start_page 377
container_title Palaeogeography, palaeoclimatology, palaeoecology
container_volume 257
creator Westerhold, Thomas
Röhl, Ursula
Raffi, Isabella
Fornaciari, Eliana
Monechi, Simonetta
Reale, Viviana
Bowles, Julie
Evans, Helen F.
description The first complete cyclic sedimentary successions for the early Paleogene from drilling multiple holes have been retrieved during two ODP expeditions: Leg 198 (Shatsky Rise, NW Pacific Ocean) and Leg 208 (Walvis Ridge, SE Atlantic Ocean). These new records allow us to construct a comprehensive astronomically calibrated stratigraphic framework with an unprecedented accuracy for both the Atlantic and the Pacific Oceans covering the entire Paleocene epoch based on the identification of the stable long-eccentricity cycle (405-kyr). High resolution X-ray fluorescence (XRF) core scanner and non-destructive core logging data from Sites 1209 through 1211 (Leg 198) and Sites 1262, 1267 (Leg 208) are the basis for such a robust chronostratigraphy. Former investigated marine (ODP Sites 1001 and 1051) and land-based (e.g., Zumaia) sections have been integrated as well. The high-fidelity chronology is the prerequisite for deciphering mechanisms in relation to prominent transient climatic events as well as completely new insights into Greenhouse climate variability in the early Paleogene. We demonstrate that the Paleocene epoch covers 24 long eccentricity cycles. We also show that no definite absolute age datums for the K/Pg boundary or the Paleocene–Eocene Thermal Maximum (PETM) can be provided by now, because of still existing uncertainties in orbital solutions and radiometric dating. However, we provide two options for tuning of the Paleocene which are only offset by 405-kyr. Our orbitally calibrated integrated Leg 208 magnetostratigraphy is used to revise the Geomagnetic Polarity Time Scale (GPTS) for Chron C29 to C25. We established a high-resolution calcareous nannofossil biostratigraphy for the South Atlantic which allows a much more detailed relative scaling of stages with biozones. The re-evaluation of the South Atlantic spreading rate model features higher frequent oscillations in spreading rates for magnetochron C28r, C27n, and C26n.
doi_str_mv 10.1016/j.palaeo.2007.09.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20566088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031018207004816</els_id><sourcerecordid>20566088</sourcerecordid><originalsourceid>FETCH-LOGICAL-a360t-359505a8d9efddef542886ad5a0e20cab67444a6f2254f501debf78b3038d73e3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-Aw89eWt9SZo0exGWxX-woAcFbyFNXjBL26xJV_Db26WePTwGhpmB9yPkmkJFgcrbXbU3ncFYMYCmglU1mSdkQVXDSknlxylZAHBaAlXsnFzkvAMAJjlbkGqdxxSH2AdrumK60CYzhjgU0RfjJxavpsNoccBiDD1ekjNvuoxXf7ok7w_3b5uncvvy-LxZb0vDJYwlFysBwii3Qu8celEzpaRxwgAysKaVTV3XRnrGRO0FUIetb1TLgSvXcORLcjPv7lP8OmAedR-yxa4zA8ZD1gyElKDUFKznoE0x54Re71PoTfrRFPQRjt7pGY4-wtGw0pM51e7mGk5PfAdMOtuAg0UXEtpRuxj-H_gF6ZJuuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20566088</pqid></control><display><type>article</type><title>Astronomical calibration of the Paleocene time</title><source>Elsevier ScienceDirect Journals</source><creator>Westerhold, Thomas ; Röhl, Ursula ; Raffi, Isabella ; Fornaciari, Eliana ; Monechi, Simonetta ; Reale, Viviana ; Bowles, Julie ; Evans, Helen F.</creator><creatorcontrib>Westerhold, Thomas ; Röhl, Ursula ; Raffi, Isabella ; Fornaciari, Eliana ; Monechi, Simonetta ; Reale, Viviana ; Bowles, Julie ; Evans, Helen F.</creatorcontrib><description>The first complete cyclic sedimentary successions for the early Paleogene from drilling multiple holes have been retrieved during two ODP expeditions: Leg 198 (Shatsky Rise, NW Pacific Ocean) and Leg 208 (Walvis Ridge, SE Atlantic Ocean). These new records allow us to construct a comprehensive astronomically calibrated stratigraphic framework with an unprecedented accuracy for both the Atlantic and the Pacific Oceans covering the entire Paleocene epoch based on the identification of the stable long-eccentricity cycle (405-kyr). High resolution X-ray fluorescence (XRF) core scanner and non-destructive core logging data from Sites 1209 through 1211 (Leg 198) and Sites 1262, 1267 (Leg 208) are the basis for such a robust chronostratigraphy. Former investigated marine (ODP Sites 1001 and 1051) and land-based (e.g., Zumaia) sections have been integrated as well. The high-fidelity chronology is the prerequisite for deciphering mechanisms in relation to prominent transient climatic events as well as completely new insights into Greenhouse climate variability in the early Paleogene. We demonstrate that the Paleocene epoch covers 24 long eccentricity cycles. We also show that no definite absolute age datums for the K/Pg boundary or the Paleocene–Eocene Thermal Maximum (PETM) can be provided by now, because of still existing uncertainties in orbital solutions and radiometric dating. However, we provide two options for tuning of the Paleocene which are only offset by 405-kyr. Our orbitally calibrated integrated Leg 208 magnetostratigraphy is used to revise the Geomagnetic Polarity Time Scale (GPTS) for Chron C29 to C25. We established a high-resolution calcareous nannofossil biostratigraphy for the South Atlantic which allows a much more detailed relative scaling of stages with biozones. The re-evaluation of the South Atlantic spreading rate model features higher frequent oscillations in spreading rates for magnetochron C28r, C27n, and C26n.</description><identifier>ISSN: 0031-0182</identifier><identifier>EISSN: 1872-616X</identifier><identifier>DOI: 10.1016/j.palaeo.2007.09.016</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biostratigraphy ; Cyclostratigraphy ; K/Pg boundary ; Magnetochrons ; Marine ; ODP ; Orbital tuning ; Paleocene ; PETM</subject><ispartof>Palaeogeography, palaeoclimatology, palaeoecology, 2008-02, Vol.257 (4), p.377-403</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a360t-359505a8d9efddef542886ad5a0e20cab67444a6f2254f501debf78b3038d73e3</citedby><cites>FETCH-LOGICAL-a360t-359505a8d9efddef542886ad5a0e20cab67444a6f2254f501debf78b3038d73e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0031018207004816$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Westerhold, Thomas</creatorcontrib><creatorcontrib>Röhl, Ursula</creatorcontrib><creatorcontrib>Raffi, Isabella</creatorcontrib><creatorcontrib>Fornaciari, Eliana</creatorcontrib><creatorcontrib>Monechi, Simonetta</creatorcontrib><creatorcontrib>Reale, Viviana</creatorcontrib><creatorcontrib>Bowles, Julie</creatorcontrib><creatorcontrib>Evans, Helen F.</creatorcontrib><title>Astronomical calibration of the Paleocene time</title><title>Palaeogeography, palaeoclimatology, palaeoecology</title><description>The first complete cyclic sedimentary successions for the early Paleogene from drilling multiple holes have been retrieved during two ODP expeditions: Leg 198 (Shatsky Rise, NW Pacific Ocean) and Leg 208 (Walvis Ridge, SE Atlantic Ocean). These new records allow us to construct a comprehensive astronomically calibrated stratigraphic framework with an unprecedented accuracy for both the Atlantic and the Pacific Oceans covering the entire Paleocene epoch based on the identification of the stable long-eccentricity cycle (405-kyr). High resolution X-ray fluorescence (XRF) core scanner and non-destructive core logging data from Sites 1209 through 1211 (Leg 198) and Sites 1262, 1267 (Leg 208) are the basis for such a robust chronostratigraphy. Former investigated marine (ODP Sites 1001 and 1051) and land-based (e.g., Zumaia) sections have been integrated as well. The high-fidelity chronology is the prerequisite for deciphering mechanisms in relation to prominent transient climatic events as well as completely new insights into Greenhouse climate variability in the early Paleogene. We demonstrate that the Paleocene epoch covers 24 long eccentricity cycles. We also show that no definite absolute age datums for the K/Pg boundary or the Paleocene–Eocene Thermal Maximum (PETM) can be provided by now, because of still existing uncertainties in orbital solutions and radiometric dating. However, we provide two options for tuning of the Paleocene which are only offset by 405-kyr. Our orbitally calibrated integrated Leg 208 magnetostratigraphy is used to revise the Geomagnetic Polarity Time Scale (GPTS) for Chron C29 to C25. We established a high-resolution calcareous nannofossil biostratigraphy for the South Atlantic which allows a much more detailed relative scaling of stages with biozones. The re-evaluation of the South Atlantic spreading rate model features higher frequent oscillations in spreading rates for magnetochron C28r, C27n, and C26n.</description><subject>Biostratigraphy</subject><subject>Cyclostratigraphy</subject><subject>K/Pg boundary</subject><subject>Magnetochrons</subject><subject>Marine</subject><subject>ODP</subject><subject>Orbital tuning</subject><subject>Paleocene</subject><subject>PETM</subject><issn>0031-0182</issn><issn>1872-616X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-Aw89eWt9SZo0exGWxX-woAcFbyFNXjBL26xJV_Db26WePTwGhpmB9yPkmkJFgcrbXbU3ncFYMYCmglU1mSdkQVXDSknlxylZAHBaAlXsnFzkvAMAJjlbkGqdxxSH2AdrumK60CYzhjgU0RfjJxavpsNoccBiDD1ekjNvuoxXf7ok7w_3b5uncvvy-LxZb0vDJYwlFysBwii3Qu8celEzpaRxwgAysKaVTV3XRnrGRO0FUIetb1TLgSvXcORLcjPv7lP8OmAedR-yxa4zA8ZD1gyElKDUFKznoE0x54Re71PoTfrRFPQRjt7pGY4-wtGw0pM51e7mGk5PfAdMOtuAg0UXEtpRuxj-H_gF6ZJuuA</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Westerhold, Thomas</creator><creator>Röhl, Ursula</creator><creator>Raffi, Isabella</creator><creator>Fornaciari, Eliana</creator><creator>Monechi, Simonetta</creator><creator>Reale, Viviana</creator><creator>Bowles, Julie</creator><creator>Evans, Helen F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20080201</creationdate><title>Astronomical calibration of the Paleocene time</title><author>Westerhold, Thomas ; Röhl, Ursula ; Raffi, Isabella ; Fornaciari, Eliana ; Monechi, Simonetta ; Reale, Viviana ; Bowles, Julie ; Evans, Helen F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a360t-359505a8d9efddef542886ad5a0e20cab67444a6f2254f501debf78b3038d73e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biostratigraphy</topic><topic>Cyclostratigraphy</topic><topic>K/Pg boundary</topic><topic>Magnetochrons</topic><topic>Marine</topic><topic>ODP</topic><topic>Orbital tuning</topic><topic>Paleocene</topic><topic>PETM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Westerhold, Thomas</creatorcontrib><creatorcontrib>Röhl, Ursula</creatorcontrib><creatorcontrib>Raffi, Isabella</creatorcontrib><creatorcontrib>Fornaciari, Eliana</creatorcontrib><creatorcontrib>Monechi, Simonetta</creatorcontrib><creatorcontrib>Reale, Viviana</creatorcontrib><creatorcontrib>Bowles, Julie</creatorcontrib><creatorcontrib>Evans, Helen F.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Palaeogeography, palaeoclimatology, palaeoecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westerhold, Thomas</au><au>Röhl, Ursula</au><au>Raffi, Isabella</au><au>Fornaciari, Eliana</au><au>Monechi, Simonetta</au><au>Reale, Viviana</au><au>Bowles, Julie</au><au>Evans, Helen F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Astronomical calibration of the Paleocene time</atitle><jtitle>Palaeogeography, palaeoclimatology, palaeoecology</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>257</volume><issue>4</issue><spage>377</spage><epage>403</epage><pages>377-403</pages><issn>0031-0182</issn><eissn>1872-616X</eissn><abstract>The first complete cyclic sedimentary successions for the early Paleogene from drilling multiple holes have been retrieved during two ODP expeditions: Leg 198 (Shatsky Rise, NW Pacific Ocean) and Leg 208 (Walvis Ridge, SE Atlantic Ocean). These new records allow us to construct a comprehensive astronomically calibrated stratigraphic framework with an unprecedented accuracy for both the Atlantic and the Pacific Oceans covering the entire Paleocene epoch based on the identification of the stable long-eccentricity cycle (405-kyr). High resolution X-ray fluorescence (XRF) core scanner and non-destructive core logging data from Sites 1209 through 1211 (Leg 198) and Sites 1262, 1267 (Leg 208) are the basis for such a robust chronostratigraphy. Former investigated marine (ODP Sites 1001 and 1051) and land-based (e.g., Zumaia) sections have been integrated as well. The high-fidelity chronology is the prerequisite for deciphering mechanisms in relation to prominent transient climatic events as well as completely new insights into Greenhouse climate variability in the early Paleogene. We demonstrate that the Paleocene epoch covers 24 long eccentricity cycles. We also show that no definite absolute age datums for the K/Pg boundary or the Paleocene–Eocene Thermal Maximum (PETM) can be provided by now, because of still existing uncertainties in orbital solutions and radiometric dating. However, we provide two options for tuning of the Paleocene which are only offset by 405-kyr. Our orbitally calibrated integrated Leg 208 magnetostratigraphy is used to revise the Geomagnetic Polarity Time Scale (GPTS) for Chron C29 to C25. We established a high-resolution calcareous nannofossil biostratigraphy for the South Atlantic which allows a much more detailed relative scaling of stages with biozones. The re-evaluation of the South Atlantic spreading rate model features higher frequent oscillations in spreading rates for magnetochron C28r, C27n, and C26n.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.palaeo.2007.09.016</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-0182
ispartof Palaeogeography, palaeoclimatology, palaeoecology, 2008-02, Vol.257 (4), p.377-403
issn 0031-0182
1872-616X
language eng
recordid cdi_proquest_miscellaneous_20566088
source Elsevier ScienceDirect Journals
subjects Biostratigraphy
Cyclostratigraphy
K/Pg boundary
Magnetochrons
Marine
ODP
Orbital tuning
Paleocene
PETM
title Astronomical calibration of the Paleocene time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Astronomical%20calibration%20of%20the%20Paleocene%20time&rft.jtitle=Palaeogeography,%20palaeoclimatology,%20palaeoecology&rft.au=Westerhold,%20Thomas&rft.date=2008-02-01&rft.volume=257&rft.issue=4&rft.spage=377&rft.epage=403&rft.pages=377-403&rft.issn=0031-0182&rft.eissn=1872-616X&rft_id=info:doi/10.1016/j.palaeo.2007.09.016&rft_dat=%3Cproquest_cross%3E20566088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20566088&rft_id=info:pmid/&rft_els_id=S0031018207004816&rfr_iscdi=true