Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy
The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando condi...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-06, Vol.120 (22), p.225502-225502, Article 225502 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225502 |
---|---|
container_issue | 22 |
container_start_page | 225502 |
container_title | Physical review letters |
container_volume | 120 |
creator | Timoshenko, Janis Anspoks, Andris Cintins, Arturs Kuzmin, Alexei Purans, Juris Frenkel, Anatoly I |
description | The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use an artificial neural network approach to extract the information on the local structure and its in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from a body-centered to a face-centered cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental conditions. |
doi_str_mv | 10.1103/physrevlett.120.225502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2056389798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120901485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-5357d6e2f5b34b5d8fe9792b453cc9cfbcd290837006633aba3f5f5815e696893</originalsourceid><addsrcrecordid>eNpdkctOxCAUhonR6Hh5BUPixk3HAwy0LCcTb8lEjZfEHaEMdaqdUoFq6tOLjrpwBSHf_4dzPoQOCYwJAXbSLYfg7VtjYxwTCmNKOQe6gUYEcpnlhEw20QiAkUwC5DtoN4RnACBUFNtoh0oJgnA5Qv2V7b1u8JWN786_4GnXeafNElfO49lSe22i9fVH3T7hu-h7E7_xe6_bkJCVjrVrAy4H_Jjd6gFPy-B89_WIz-rW_mXSrbMmeheM64Z9tFXpJtiDn3MPPZyd3s8usvn1-eVsOs8MBxEzzni-EJZWvGSTki-Kyspc0nLCmTHSVKVZUAkFywGEYEyXmlW84gXhVkhRSLaHjte9aajX3oaoVnUwtml0a10fFAUuWJE6i4Qe_UOfXe_b9DtF04IlkEnBEyXWlEmTJAGV6ny90n5QBNSXGHWTxNzat3kSo1JOrcWk4OFPfV-u7OIv9muCfQJmvY5t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120901485</pqid></control><display><type>article</type><title>Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Timoshenko, Janis ; Anspoks, Andris ; Cintins, Arturs ; Kuzmin, Alexei ; Purans, Juris ; Frenkel, Anatoly I</creator><creatorcontrib>Timoshenko, Janis ; Anspoks, Andris ; Cintins, Arturs ; Kuzmin, Alexei ; Purans, Juris ; Frenkel, Anatoly I</creatorcontrib><description>The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use an artificial neural network approach to extract the information on the local structure and its in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from a body-centered to a face-centered cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental conditions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.120.225502</identifier><identifier>PMID: 29906159</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Artificial neural networks ; Distribution functions ; Fine structure ; Iron ; Neural networks ; Radial distribution ; Spectrum analysis ; Transformations ; X ray absorption</subject><ispartof>Physical review letters, 2018-06, Vol.120 (22), p.225502-225502, Article 225502</ispartof><rights>Copyright American Physical Society Jun 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-5357d6e2f5b34b5d8fe9792b453cc9cfbcd290837006633aba3f5f5815e696893</citedby><cites>FETCH-LOGICAL-c506t-5357d6e2f5b34b5d8fe9792b453cc9cfbcd290837006633aba3f5f5815e696893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2878,2879,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29906159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Timoshenko, Janis</creatorcontrib><creatorcontrib>Anspoks, Andris</creatorcontrib><creatorcontrib>Cintins, Arturs</creatorcontrib><creatorcontrib>Kuzmin, Alexei</creatorcontrib><creatorcontrib>Purans, Juris</creatorcontrib><creatorcontrib>Frenkel, Anatoly I</creatorcontrib><title>Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use an artificial neural network approach to extract the information on the local structure and its in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from a body-centered to a face-centered cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental conditions.</description><subject>Artificial neural networks</subject><subject>Distribution functions</subject><subject>Fine structure</subject><subject>Iron</subject><subject>Neural networks</subject><subject>Radial distribution</subject><subject>Spectrum analysis</subject><subject>Transformations</subject><subject>X ray absorption</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkctOxCAUhonR6Hh5BUPixk3HAwy0LCcTb8lEjZfEHaEMdaqdUoFq6tOLjrpwBSHf_4dzPoQOCYwJAXbSLYfg7VtjYxwTCmNKOQe6gUYEcpnlhEw20QiAkUwC5DtoN4RnACBUFNtoh0oJgnA5Qv2V7b1u8JWN786_4GnXeafNElfO49lSe22i9fVH3T7hu-h7E7_xe6_bkJCVjrVrAy4H_Jjd6gFPy-B89_WIz-rW_mXSrbMmeheM64Z9tFXpJtiDn3MPPZyd3s8usvn1-eVsOs8MBxEzzni-EJZWvGSTki-Kyspc0nLCmTHSVKVZUAkFywGEYEyXmlW84gXhVkhRSLaHjte9aajX3oaoVnUwtml0a10fFAUuWJE6i4Qe_UOfXe_b9DtF04IlkEnBEyXWlEmTJAGV6ny90n5QBNSXGHWTxNzat3kSo1JOrcWk4OFPfV-u7OIv9muCfQJmvY5t</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Timoshenko, Janis</creator><creator>Anspoks, Andris</creator><creator>Cintins, Arturs</creator><creator>Kuzmin, Alexei</creator><creator>Purans, Juris</creator><creator>Frenkel, Anatoly I</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20180601</creationdate><title>Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy</title><author>Timoshenko, Janis ; Anspoks, Andris ; Cintins, Arturs ; Kuzmin, Alexei ; Purans, Juris ; Frenkel, Anatoly I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-5357d6e2f5b34b5d8fe9792b453cc9cfbcd290837006633aba3f5f5815e696893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Distribution functions</topic><topic>Fine structure</topic><topic>Iron</topic><topic>Neural networks</topic><topic>Radial distribution</topic><topic>Spectrum analysis</topic><topic>Transformations</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timoshenko, Janis</creatorcontrib><creatorcontrib>Anspoks, Andris</creatorcontrib><creatorcontrib>Cintins, Arturs</creatorcontrib><creatorcontrib>Kuzmin, Alexei</creatorcontrib><creatorcontrib>Purans, Juris</creatorcontrib><creatorcontrib>Frenkel, Anatoly I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timoshenko, Janis</au><au>Anspoks, Andris</au><au>Cintins, Arturs</au><au>Kuzmin, Alexei</au><au>Purans, Juris</au><au>Frenkel, Anatoly I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>120</volume><issue>22</issue><spage>225502</spage><epage>225502</epage><pages>225502-225502</pages><artnum>225502</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use an artificial neural network approach to extract the information on the local structure and its in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from a body-centered to a face-centered cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental conditions.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>29906159</pmid><doi>10.1103/physrevlett.120.225502</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2018-06, Vol.120 (22), p.225502-225502, Article 225502 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2056389798 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Distribution functions Fine structure Iron Neural networks Radial distribution Spectrum analysis Transformations X ray absorption |
title | Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network%20Approach%20for%20Characterizing%20Structural%20Transformations%20by%20X-Ray%20Absorption%20Fine%20Structure%20Spectroscopy&rft.jtitle=Physical%20review%20letters&rft.au=Timoshenko,%20Janis&rft.date=2018-06-01&rft.volume=120&rft.issue=22&rft.spage=225502&rft.epage=225502&rft.pages=225502-225502&rft.artnum=225502&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.120.225502&rft_dat=%3Cproquest_cross%3E2120901485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120901485&rft_id=info:pmid/29906159&rfr_iscdi=true |