Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy

The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-06, Vol.120 (22), p.225502-225502, Article 225502
Hauptverfasser: Timoshenko, Janis, Anspoks, Andris, Cintins, Arturs, Kuzmin, Alexei, Purans, Juris, Frenkel, Anatoly I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225502
container_issue 22
container_start_page 225502
container_title Physical review letters
container_volume 120
creator Timoshenko, Janis
Anspoks, Andris
Cintins, Arturs
Kuzmin, Alexei
Purans, Juris
Frenkel, Anatoly I
description The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use an artificial neural network approach to extract the information on the local structure and its in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from a body-centered to a face-centered cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental conditions.
doi_str_mv 10.1103/physrevlett.120.225502
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2056389798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2120901485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-5357d6e2f5b34b5d8fe9792b453cc9cfbcd290837006633aba3f5f5815e696893</originalsourceid><addsrcrecordid>eNpdkctOxCAUhonR6Hh5BUPixk3HAwy0LCcTb8lEjZfEHaEMdaqdUoFq6tOLjrpwBSHf_4dzPoQOCYwJAXbSLYfg7VtjYxwTCmNKOQe6gUYEcpnlhEw20QiAkUwC5DtoN4RnACBUFNtoh0oJgnA5Qv2V7b1u8JWN786_4GnXeafNElfO49lSe22i9fVH3T7hu-h7E7_xe6_bkJCVjrVrAy4H_Jjd6gFPy-B89_WIz-rW_mXSrbMmeheM64Z9tFXpJtiDn3MPPZyd3s8usvn1-eVsOs8MBxEzzni-EJZWvGSTki-Kyspc0nLCmTHSVKVZUAkFywGEYEyXmlW84gXhVkhRSLaHjte9aajX3oaoVnUwtml0a10fFAUuWJE6i4Qe_UOfXe_b9DtF04IlkEnBEyXWlEmTJAGV6ny90n5QBNSXGHWTxNzat3kSo1JOrcWk4OFPfV-u7OIv9muCfQJmvY5t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120901485</pqid></control><display><type>article</type><title>Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Timoshenko, Janis ; Anspoks, Andris ; Cintins, Arturs ; Kuzmin, Alexei ; Purans, Juris ; Frenkel, Anatoly I</creator><creatorcontrib>Timoshenko, Janis ; Anspoks, Andris ; Cintins, Arturs ; Kuzmin, Alexei ; Purans, Juris ; Frenkel, Anatoly I</creatorcontrib><description>The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use an artificial neural network approach to extract the information on the local structure and its in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from a body-centered to a face-centered cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental conditions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.120.225502</identifier><identifier>PMID: 29906159</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Artificial neural networks ; Distribution functions ; Fine structure ; Iron ; Neural networks ; Radial distribution ; Spectrum analysis ; Transformations ; X ray absorption</subject><ispartof>Physical review letters, 2018-06, Vol.120 (22), p.225502-225502, Article 225502</ispartof><rights>Copyright American Physical Society Jun 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-5357d6e2f5b34b5d8fe9792b453cc9cfbcd290837006633aba3f5f5815e696893</citedby><cites>FETCH-LOGICAL-c506t-5357d6e2f5b34b5d8fe9792b453cc9cfbcd290837006633aba3f5f5815e696893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2878,2879,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29906159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Timoshenko, Janis</creatorcontrib><creatorcontrib>Anspoks, Andris</creatorcontrib><creatorcontrib>Cintins, Arturs</creatorcontrib><creatorcontrib>Kuzmin, Alexei</creatorcontrib><creatorcontrib>Purans, Juris</creatorcontrib><creatorcontrib>Frenkel, Anatoly I</creatorcontrib><title>Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use an artificial neural network approach to extract the information on the local structure and its in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from a body-centered to a face-centered cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental conditions.</description><subject>Artificial neural networks</subject><subject>Distribution functions</subject><subject>Fine structure</subject><subject>Iron</subject><subject>Neural networks</subject><subject>Radial distribution</subject><subject>Spectrum analysis</subject><subject>Transformations</subject><subject>X ray absorption</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkctOxCAUhonR6Hh5BUPixk3HAwy0LCcTb8lEjZfEHaEMdaqdUoFq6tOLjrpwBSHf_4dzPoQOCYwJAXbSLYfg7VtjYxwTCmNKOQe6gUYEcpnlhEw20QiAkUwC5DtoN4RnACBUFNtoh0oJgnA5Qv2V7b1u8JWN786_4GnXeafNElfO49lSe22i9fVH3T7hu-h7E7_xe6_bkJCVjrVrAy4H_Jjd6gFPy-B89_WIz-rW_mXSrbMmeheM64Z9tFXpJtiDn3MPPZyd3s8usvn1-eVsOs8MBxEzzni-EJZWvGSTki-Kyspc0nLCmTHSVKVZUAkFywGEYEyXmlW84gXhVkhRSLaHjte9aajX3oaoVnUwtml0a10fFAUuWJE6i4Qe_UOfXe_b9DtF04IlkEnBEyXWlEmTJAGV6ny90n5QBNSXGHWTxNzat3kSo1JOrcWk4OFPfV-u7OIv9muCfQJmvY5t</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Timoshenko, Janis</creator><creator>Anspoks, Andris</creator><creator>Cintins, Arturs</creator><creator>Kuzmin, Alexei</creator><creator>Purans, Juris</creator><creator>Frenkel, Anatoly I</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20180601</creationdate><title>Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy</title><author>Timoshenko, Janis ; Anspoks, Andris ; Cintins, Arturs ; Kuzmin, Alexei ; Purans, Juris ; Frenkel, Anatoly I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-5357d6e2f5b34b5d8fe9792b453cc9cfbcd290837006633aba3f5f5815e696893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Distribution functions</topic><topic>Fine structure</topic><topic>Iron</topic><topic>Neural networks</topic><topic>Radial distribution</topic><topic>Spectrum analysis</topic><topic>Transformations</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timoshenko, Janis</creatorcontrib><creatorcontrib>Anspoks, Andris</creatorcontrib><creatorcontrib>Cintins, Arturs</creatorcontrib><creatorcontrib>Kuzmin, Alexei</creatorcontrib><creatorcontrib>Purans, Juris</creatorcontrib><creatorcontrib>Frenkel, Anatoly I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timoshenko, Janis</au><au>Anspoks, Andris</au><au>Cintins, Arturs</au><au>Kuzmin, Alexei</au><au>Purans, Juris</au><au>Frenkel, Anatoly I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>120</volume><issue>22</issue><spage>225502</spage><epage>225502</epage><pages>225502-225502</pages><artnum>225502</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use an artificial neural network approach to extract the information on the local structure and its in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from a body-centered to a face-centered cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental conditions.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>29906159</pmid><doi>10.1103/physrevlett.120.225502</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2018-06, Vol.120 (22), p.225502-225502, Article 225502
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2056389798
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Distribution functions
Fine structure
Iron
Neural networks
Radial distribution
Spectrum analysis
Transformations
X ray absorption
title Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network%20Approach%20for%20Characterizing%20Structural%20Transformations%20by%20X-Ray%20Absorption%20Fine%20Structure%20Spectroscopy&rft.jtitle=Physical%20review%20letters&rft.au=Timoshenko,%20Janis&rft.date=2018-06-01&rft.volume=120&rft.issue=22&rft.spage=225502&rft.epage=225502&rft.pages=225502-225502&rft.artnum=225502&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.120.225502&rft_dat=%3Cproquest_cross%3E2120901485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120901485&rft_id=info:pmid/29906159&rfr_iscdi=true