Redox microniches in groundwater: a model study on the geometric and kinetic conditions required for concomitant Fe oxide reduction, sulfate reduction, and methanogenesis

A pore‐scale model using PHAST is used to study the distribution of redox processes and other geochemical processes in intergranular and intragranular microniches in a groundwater system. The goal is to determine the geometric and kinetic conditions that may give rise to the presence of methane unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2007-12, Vol.43 (12), p.n/a
1. Verfasser: Jakobsen, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Water resources research
container_volume 43
creator Jakobsen, R
description A pore‐scale model using PHAST is used to study the distribution of redox processes and other geochemical processes in intergranular and intragranular microniches in a groundwater system. The goal is to determine the geometric and kinetic conditions that may give rise to the presence of methane under Fe oxide and sulfate reducing conditions. The model includes FeS precipitation, calcite dissolution and precipitation, and an extended partial equilibrium description of the redox processes: Fe oxide reduction, sulfate reduction, and methanogenesis/methane oxidation, which takes the microbial energy requirements into account. The model indicates that a separation of redox processes within the pore space is possible, if the stagnant pores are deep and narrow and the rate of organic matter decomposition is fast. However, in most aquifers the organic matter reactivity will be so low that isolated lumps or actual layers of organic matter rather than particles or intragranular coatings of organic matter are required in order to produce methanogenic conditions; otherwise sulfate reduction will take place in the stagnant parts. In the model, the redox processes lead to localized secondary processes occurring at the grain scale; for example, the oxidation of organic matter in a microniche releases CO2 which dissolves calcite, which is reprecipitated where the Fe oxides are being dissolved and reduced because of the locally increased pH.
doi_str_mv 10.1029/2006WR005663
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20556911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20556911</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4768-cdef8d7f7a31cc8f6e7e479f83df116dbf10f754dadb7bf3a4a2badc8ae128ab3</originalsourceid><addsrcrecordid>eNp90cGO0zAQBuAIgURZuHHHJ04bsOPETrjRQgtSBVJh1aPl2OPWbGLv2o62fSWeEldBaE-cbI2-f0aaKYrXBL8juOreVxiz_Q7jhjH6pFiQrq5L3nH6tFhgXNOS0I4_L17E-AtjUjeML4rfO9D-hEargndWHSEi69Ah-MnpB5kgfEASjV7DgGKa9Bl5h9IR0AH8CClYhaTT6NY6SPmvvNM2We8iCnA_2QAaGR8udeVHm6RLaA3In6yGLPSkLvgaxWkwedjj0qVtnnCUzh_AQbTxZfHMyCHCq7_vVXGz_vxz9aXcft98XX3clrLmrC2VBtNqbrikRKnWMOBQ8860VBtCmO4NwYY3tZa6572hspZVL7VqJZCqlT29Kt7Ofe-Cv58gJjHaqGAYpAM_RVHhpmEdIRlezzDvLsYARtwFO8pwFgSLy0HE44NkTmf-YAc4_9eK_W61I4Q0bU6Vc8rGBKd_KRluBeOUN2L_bSPo5hNdL7dLscz-zeyN9EIego3i5keFCcW4ZR1vGP0DXyOrHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20556911</pqid></control><display><type>article</type><title>Redox microniches in groundwater: a model study on the geometric and kinetic conditions required for concomitant Fe oxide reduction, sulfate reduction, and methanogenesis</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jakobsen, R</creator><creatorcontrib>Jakobsen, R</creatorcontrib><description>A pore‐scale model using PHAST is used to study the distribution of redox processes and other geochemical processes in intergranular and intragranular microniches in a groundwater system. The goal is to determine the geometric and kinetic conditions that may give rise to the presence of methane under Fe oxide and sulfate reducing conditions. The model includes FeS precipitation, calcite dissolution and precipitation, and an extended partial equilibrium description of the redox processes: Fe oxide reduction, sulfate reduction, and methanogenesis/methane oxidation, which takes the microbial energy requirements into account. The model indicates that a separation of redox processes within the pore space is possible, if the stagnant pores are deep and narrow and the rate of organic matter decomposition is fast. However, in most aquifers the organic matter reactivity will be so low that isolated lumps or actual layers of organic matter rather than particles or intragranular coatings of organic matter are required in order to produce methanogenic conditions; otherwise sulfate reduction will take place in the stagnant parts. In the model, the redox processes lead to localized secondary processes occurring at the grain scale; for example, the oxidation of organic matter in a microniche releases CO2 which dissolves calcite, which is reprecipitated where the Fe oxides are being dissolved and reduced because of the locally increased pH.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2006WR005663</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>aquifers ; calcite ; carbon dioxide ; chemical precipitation ; geochemical modeling ; geochemistry ; groundwater ; hydrochemistry ; hydrologic models ; iron oxides ; iron sulfide ; kinetics ; methane production ; methanogenesis ; microbial activity ; microniches ; organic matter ; oxidation ; partial equilibrium ; particle size ; PHAST ; redox processes ; reduction ; soil pore system ; soil pore water ; sulfates</subject><ispartof>Water resources research, 2007-12, Vol.43 (12), p.n/a</ispartof><rights>Copyright 2007 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4768-cdef8d7f7a31cc8f6e7e479f83df116dbf10f754dadb7bf3a4a2badc8ae128ab3</citedby><cites>FETCH-LOGICAL-a4768-cdef8d7f7a31cc8f6e7e479f83df116dbf10f754dadb7bf3a4a2badc8ae128ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2006WR005663$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2006WR005663$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,11512,27922,27923,45572,45573,46466,46890</link.rule.ids></links><search><creatorcontrib>Jakobsen, R</creatorcontrib><title>Redox microniches in groundwater: a model study on the geometric and kinetic conditions required for concomitant Fe oxide reduction, sulfate reduction, and methanogenesis</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>A pore‐scale model using PHAST is used to study the distribution of redox processes and other geochemical processes in intergranular and intragranular microniches in a groundwater system. The goal is to determine the geometric and kinetic conditions that may give rise to the presence of methane under Fe oxide and sulfate reducing conditions. The model includes FeS precipitation, calcite dissolution and precipitation, and an extended partial equilibrium description of the redox processes: Fe oxide reduction, sulfate reduction, and methanogenesis/methane oxidation, which takes the microbial energy requirements into account. The model indicates that a separation of redox processes within the pore space is possible, if the stagnant pores are deep and narrow and the rate of organic matter decomposition is fast. However, in most aquifers the organic matter reactivity will be so low that isolated lumps or actual layers of organic matter rather than particles or intragranular coatings of organic matter are required in order to produce methanogenic conditions; otherwise sulfate reduction will take place in the stagnant parts. In the model, the redox processes lead to localized secondary processes occurring at the grain scale; for example, the oxidation of organic matter in a microniche releases CO2 which dissolves calcite, which is reprecipitated where the Fe oxides are being dissolved and reduced because of the locally increased pH.</description><subject>aquifers</subject><subject>calcite</subject><subject>carbon dioxide</subject><subject>chemical precipitation</subject><subject>geochemical modeling</subject><subject>geochemistry</subject><subject>groundwater</subject><subject>hydrochemistry</subject><subject>hydrologic models</subject><subject>iron oxides</subject><subject>iron sulfide</subject><subject>kinetics</subject><subject>methane production</subject><subject>methanogenesis</subject><subject>microbial activity</subject><subject>microniches</subject><subject>organic matter</subject><subject>oxidation</subject><subject>partial equilibrium</subject><subject>particle size</subject><subject>PHAST</subject><subject>redox processes</subject><subject>reduction</subject><subject>soil pore system</subject><subject>soil pore water</subject><subject>sulfates</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90cGO0zAQBuAIgURZuHHHJ04bsOPETrjRQgtSBVJh1aPl2OPWbGLv2o62fSWeEldBaE-cbI2-f0aaKYrXBL8juOreVxiz_Q7jhjH6pFiQrq5L3nH6tFhgXNOS0I4_L17E-AtjUjeML4rfO9D-hEargndWHSEi69Ah-MnpB5kgfEASjV7DgGKa9Bl5h9IR0AH8CClYhaTT6NY6SPmvvNM2We8iCnA_2QAaGR8udeVHm6RLaA3In6yGLPSkLvgaxWkwedjj0qVtnnCUzh_AQbTxZfHMyCHCq7_vVXGz_vxz9aXcft98XX3clrLmrC2VBtNqbrikRKnWMOBQ8860VBtCmO4NwYY3tZa6572hspZVL7VqJZCqlT29Kt7Ofe-Cv58gJjHaqGAYpAM_RVHhpmEdIRlezzDvLsYARtwFO8pwFgSLy0HE44NkTmf-YAc4_9eK_W61I4Q0bU6Vc8rGBKd_KRluBeOUN2L_bSPo5hNdL7dLscz-zeyN9EIego3i5keFCcW4ZR1vGP0DXyOrHg</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Jakobsen, R</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200712</creationdate><title>Redox microniches in groundwater: a model study on the geometric and kinetic conditions required for concomitant Fe oxide reduction, sulfate reduction, and methanogenesis</title><author>Jakobsen, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4768-cdef8d7f7a31cc8f6e7e479f83df116dbf10f754dadb7bf3a4a2badc8ae128ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>aquifers</topic><topic>calcite</topic><topic>carbon dioxide</topic><topic>chemical precipitation</topic><topic>geochemical modeling</topic><topic>geochemistry</topic><topic>groundwater</topic><topic>hydrochemistry</topic><topic>hydrologic models</topic><topic>iron oxides</topic><topic>iron sulfide</topic><topic>kinetics</topic><topic>methane production</topic><topic>methanogenesis</topic><topic>microbial activity</topic><topic>microniches</topic><topic>organic matter</topic><topic>oxidation</topic><topic>partial equilibrium</topic><topic>particle size</topic><topic>PHAST</topic><topic>redox processes</topic><topic>reduction</topic><topic>soil pore system</topic><topic>soil pore water</topic><topic>sulfates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jakobsen, R</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jakobsen, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox microniches in groundwater: a model study on the geometric and kinetic conditions required for concomitant Fe oxide reduction, sulfate reduction, and methanogenesis</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2007-12</date><risdate>2007</risdate><volume>43</volume><issue>12</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>A pore‐scale model using PHAST is used to study the distribution of redox processes and other geochemical processes in intergranular and intragranular microniches in a groundwater system. The goal is to determine the geometric and kinetic conditions that may give rise to the presence of methane under Fe oxide and sulfate reducing conditions. The model includes FeS precipitation, calcite dissolution and precipitation, and an extended partial equilibrium description of the redox processes: Fe oxide reduction, sulfate reduction, and methanogenesis/methane oxidation, which takes the microbial energy requirements into account. The model indicates that a separation of redox processes within the pore space is possible, if the stagnant pores are deep and narrow and the rate of organic matter decomposition is fast. However, in most aquifers the organic matter reactivity will be so low that isolated lumps or actual layers of organic matter rather than particles or intragranular coatings of organic matter are required in order to produce methanogenic conditions; otherwise sulfate reduction will take place in the stagnant parts. In the model, the redox processes lead to localized secondary processes occurring at the grain scale; for example, the oxidation of organic matter in a microniche releases CO2 which dissolves calcite, which is reprecipitated where the Fe oxides are being dissolved and reduced because of the locally increased pH.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2006WR005663</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2007-12, Vol.43 (12), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_20556911
source Wiley Online Library Journals Frontfile Complete; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects aquifers
calcite
carbon dioxide
chemical precipitation
geochemical modeling
geochemistry
groundwater
hydrochemistry
hydrologic models
iron oxides
iron sulfide
kinetics
methane production
methanogenesis
microbial activity
microniches
organic matter
oxidation
partial equilibrium
particle size
PHAST
redox processes
reduction
soil pore system
soil pore water
sulfates
title Redox microniches in groundwater: a model study on the geometric and kinetic conditions required for concomitant Fe oxide reduction, sulfate reduction, and methanogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%20microniches%20in%20groundwater:%20a%20model%20study%20on%20the%20geometric%20and%20kinetic%20conditions%20required%20for%20concomitant%20Fe%20oxide%20reduction,%20sulfate%20reduction,%20and%20methanogenesis&rft.jtitle=Water%20resources%20research&rft.au=Jakobsen,%20R&rft.date=2007-12&rft.volume=43&rft.issue=12&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2006WR005663&rft_dat=%3Cproquest_cross%3E20556911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20556911&rft_id=info:pmid/&rfr_iscdi=true