Electrodeformation-Based Biomechanical Chip for Quantifying Global Viscoelasticity of Cancer Cells Regulated by Cell Cycle

Mechanical phenotypes of cells are found to hold vital clues to reveal cellular functions and behaviors, which not only has great physiological significance but also is crucial for disease diagnosis. To this end, we developed a set of electrodeformation-based biomechanical microchip assays to quanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2018-07, Vol.90 (14), p.8370-8378
Hauptverfasser: Teng, Yao, Zhu, Kui, Xiong, Chunyang, Huang, Jianyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8378
container_issue 14
container_start_page 8370
container_title Analytical chemistry (Washington)
container_volume 90
creator Teng, Yao
Zhu, Kui
Xiong, Chunyang
Huang, Jianyong
description Mechanical phenotypes of cells are found to hold vital clues to reveal cellular functions and behaviors, which not only has great physiological significance but also is crucial for disease diagnosis. To this end, we developed a set of electrodeformation-based biomechanical microchip assays to quantify mechanical phenotypes on the single-cell level. By investigating the spatiotemporal dynamics of cancer cells driven by dielectrophoresis forces, we captured the key global viscoelastic indexes including cellular elasticity, viscosity, and transition time that was defined as the ratio of the transient viscosity and elasticity, simultaneously, and thus explored their intrinsic correlation with cell cycle progression. Our results showed that both global elasticity and viscosity have a significant periodic variation with cell cycle progression, but the transition time remained unchanged in the process, indicating that it might be an intrinsic property of cancer cells that is independent of the cell cycle and the type of cell in the experiments. Further, we investigated the molecular mechanism regulating cellular viscoelastic phenotypes on the biomechanical chips through intracellular cytoskeletal perturbation assays. These findings, together with the electrodeformation-based microchip technique, not only reveal the relation between mechanical phenotypes of cancer cells and cell cycle progression but also provide a platform for implementing multi-index mechanical phenotype assays associated with cancer cell cycles in the clinic.
doi_str_mv 10.1021/acs.analchem.8b00584
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2054922752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2054922752</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-fcef3e0eea97d5b1ebd5db441303b610b71d1a890c77d5816c64879e2e9adb5d3</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EotPCGyBkiQ2bDNdOnMRLGpUWqVLVCthG_rnpuHLiwU4W4enrMtMuWLCy5Hu-z1c-hHxgsGXA2Rdl0lZNypsdjttWA4i2ekU2THAo6rblr8kGAMqCNwAn5DSlBwDGgNVvyQmXraylqDfkz4VHM8dgcQhxVLMLU3GuElp67sKIZqcmZ5Sn3c7taUbo7aKm2Q2rm-7ppQ86z365ZAJ6lWZn3LzSMNBOTQYj7dD7RO_wfvFqzp16_XtFu9V4fEfeDMonfH88z8jPbxc_uqvi-ubye_f1ulBVxediMDiUCIhKNlZohtoKq6uKlVDqmoFumGWqlWCaPG9ZbeqqbSRylMpqYcsz8vnQu4_h94Jp7se8cF5DTRiW1HMQleS8ETyjn_5BH8IS8ydnijEmGs5AZqo6UCaGlCIO_T66UcW1Z9A_uemzm_7ZTX90k2Mfj-WLHtG-hJ5lZAAOwFP85eH_dj4CFRWfYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111572109</pqid></control><display><type>article</type><title>Electrodeformation-Based Biomechanical Chip for Quantifying Global Viscoelasticity of Cancer Cells Regulated by Cell Cycle</title><source>ACS Publications</source><creator>Teng, Yao ; Zhu, Kui ; Xiong, Chunyang ; Huang, Jianyong</creator><creatorcontrib>Teng, Yao ; Zhu, Kui ; Xiong, Chunyang ; Huang, Jianyong</creatorcontrib><description>Mechanical phenotypes of cells are found to hold vital clues to reveal cellular functions and behaviors, which not only has great physiological significance but also is crucial for disease diagnosis. To this end, we developed a set of electrodeformation-based biomechanical microchip assays to quantify mechanical phenotypes on the single-cell level. By investigating the spatiotemporal dynamics of cancer cells driven by dielectrophoresis forces, we captured the key global viscoelastic indexes including cellular elasticity, viscosity, and transition time that was defined as the ratio of the transient viscosity and elasticity, simultaneously, and thus explored their intrinsic correlation with cell cycle progression. Our results showed that both global elasticity and viscosity have a significant periodic variation with cell cycle progression, but the transition time remained unchanged in the process, indicating that it might be an intrinsic property of cancer cells that is independent of the cell cycle and the type of cell in the experiments. Further, we investigated the molecular mechanism regulating cellular viscoelastic phenotypes on the biomechanical chips through intracellular cytoskeletal perturbation assays. These findings, together with the electrodeformation-based microchip technique, not only reveal the relation between mechanical phenotypes of cancer cells and cell cycle progression but also provide a platform for implementing multi-index mechanical phenotype assays associated with cancer cell cycles in the clinic.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b00584</identifier><identifier>PMID: 29896956</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Assaying ; Biomechanics ; Cancer ; Cell cycle ; Chemistry ; Cytoskeleton ; Dielectrophoresis ; Elasticity ; Medical diagnosis ; Periodic variations ; Perturbation ; Phenotypes ; Viscoelasticity ; Viscosity</subject><ispartof>Analytical chemistry (Washington), 2018-07, Vol.90 (14), p.8370-8378</ispartof><rights>Copyright American Chemical Society Jul 17, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-fcef3e0eea97d5b1ebd5db441303b610b71d1a890c77d5816c64879e2e9adb5d3</citedby><cites>FETCH-LOGICAL-a442t-fcef3e0eea97d5b1ebd5db441303b610b71d1a890c77d5816c64879e2e9adb5d3</cites><orcidid>0000-0002-6581-895X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b00584$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.8b00584$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29896956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teng, Yao</creatorcontrib><creatorcontrib>Zhu, Kui</creatorcontrib><creatorcontrib>Xiong, Chunyang</creatorcontrib><creatorcontrib>Huang, Jianyong</creatorcontrib><title>Electrodeformation-Based Biomechanical Chip for Quantifying Global Viscoelasticity of Cancer Cells Regulated by Cell Cycle</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Mechanical phenotypes of cells are found to hold vital clues to reveal cellular functions and behaviors, which not only has great physiological significance but also is crucial for disease diagnosis. To this end, we developed a set of electrodeformation-based biomechanical microchip assays to quantify mechanical phenotypes on the single-cell level. By investigating the spatiotemporal dynamics of cancer cells driven by dielectrophoresis forces, we captured the key global viscoelastic indexes including cellular elasticity, viscosity, and transition time that was defined as the ratio of the transient viscosity and elasticity, simultaneously, and thus explored their intrinsic correlation with cell cycle progression. Our results showed that both global elasticity and viscosity have a significant periodic variation with cell cycle progression, but the transition time remained unchanged in the process, indicating that it might be an intrinsic property of cancer cells that is independent of the cell cycle and the type of cell in the experiments. Further, we investigated the molecular mechanism regulating cellular viscoelastic phenotypes on the biomechanical chips through intracellular cytoskeletal perturbation assays. These findings, together with the electrodeformation-based microchip technique, not only reveal the relation between mechanical phenotypes of cancer cells and cell cycle progression but also provide a platform for implementing multi-index mechanical phenotype assays associated with cancer cell cycles in the clinic.</description><subject>Assaying</subject><subject>Biomechanics</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Chemistry</subject><subject>Cytoskeleton</subject><subject>Dielectrophoresis</subject><subject>Elasticity</subject><subject>Medical diagnosis</subject><subject>Periodic variations</subject><subject>Perturbation</subject><subject>Phenotypes</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAURi0EotPCGyBkiQ2bDNdOnMRLGpUWqVLVCthG_rnpuHLiwU4W4enrMtMuWLCy5Hu-z1c-hHxgsGXA2Rdl0lZNypsdjttWA4i2ekU2THAo6rblr8kGAMqCNwAn5DSlBwDGgNVvyQmXraylqDfkz4VHM8dgcQhxVLMLU3GuElp67sKIZqcmZ5Sn3c7taUbo7aKm2Q2rm-7ppQ86z365ZAJ6lWZn3LzSMNBOTQYj7dD7RO_wfvFqzp16_XtFu9V4fEfeDMonfH88z8jPbxc_uqvi-ubye_f1ulBVxediMDiUCIhKNlZohtoKq6uKlVDqmoFumGWqlWCaPG9ZbeqqbSRylMpqYcsz8vnQu4_h94Jp7se8cF5DTRiW1HMQleS8ETyjn_5BH8IS8ydnijEmGs5AZqo6UCaGlCIO_T66UcW1Z9A_uemzm_7ZTX90k2Mfj-WLHtG-hJ5lZAAOwFP85eH_dj4CFRWfYA</recordid><startdate>20180717</startdate><enddate>20180717</enddate><creator>Teng, Yao</creator><creator>Zhu, Kui</creator><creator>Xiong, Chunyang</creator><creator>Huang, Jianyong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6581-895X</orcidid></search><sort><creationdate>20180717</creationdate><title>Electrodeformation-Based Biomechanical Chip for Quantifying Global Viscoelasticity of Cancer Cells Regulated by Cell Cycle</title><author>Teng, Yao ; Zhu, Kui ; Xiong, Chunyang ; Huang, Jianyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-fcef3e0eea97d5b1ebd5db441303b610b71d1a890c77d5816c64879e2e9adb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Assaying</topic><topic>Biomechanics</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Chemistry</topic><topic>Cytoskeleton</topic><topic>Dielectrophoresis</topic><topic>Elasticity</topic><topic>Medical diagnosis</topic><topic>Periodic variations</topic><topic>Perturbation</topic><topic>Phenotypes</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teng, Yao</creatorcontrib><creatorcontrib>Zhu, Kui</creatorcontrib><creatorcontrib>Xiong, Chunyang</creatorcontrib><creatorcontrib>Huang, Jianyong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teng, Yao</au><au>Zhu, Kui</au><au>Xiong, Chunyang</au><au>Huang, Jianyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrodeformation-Based Biomechanical Chip for Quantifying Global Viscoelasticity of Cancer Cells Regulated by Cell Cycle</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-07-17</date><risdate>2018</risdate><volume>90</volume><issue>14</issue><spage>8370</spage><epage>8378</epage><pages>8370-8378</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Mechanical phenotypes of cells are found to hold vital clues to reveal cellular functions and behaviors, which not only has great physiological significance but also is crucial for disease diagnosis. To this end, we developed a set of electrodeformation-based biomechanical microchip assays to quantify mechanical phenotypes on the single-cell level. By investigating the spatiotemporal dynamics of cancer cells driven by dielectrophoresis forces, we captured the key global viscoelastic indexes including cellular elasticity, viscosity, and transition time that was defined as the ratio of the transient viscosity and elasticity, simultaneously, and thus explored their intrinsic correlation with cell cycle progression. Our results showed that both global elasticity and viscosity have a significant periodic variation with cell cycle progression, but the transition time remained unchanged in the process, indicating that it might be an intrinsic property of cancer cells that is independent of the cell cycle and the type of cell in the experiments. Further, we investigated the molecular mechanism regulating cellular viscoelastic phenotypes on the biomechanical chips through intracellular cytoskeletal perturbation assays. These findings, together with the electrodeformation-based microchip technique, not only reveal the relation between mechanical phenotypes of cancer cells and cell cycle progression but also provide a platform for implementing multi-index mechanical phenotype assays associated with cancer cell cycles in the clinic.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29896956</pmid><doi>10.1021/acs.analchem.8b00584</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6581-895X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2018-07, Vol.90 (14), p.8370-8378
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2054922752
source ACS Publications
subjects Assaying
Biomechanics
Cancer
Cell cycle
Chemistry
Cytoskeleton
Dielectrophoresis
Elasticity
Medical diagnosis
Periodic variations
Perturbation
Phenotypes
Viscoelasticity
Viscosity
title Electrodeformation-Based Biomechanical Chip for Quantifying Global Viscoelasticity of Cancer Cells Regulated by Cell Cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrodeformation-Based%20Biomechanical%20Chip%20for%20Quantifying%20Global%20Viscoelasticity%20of%20Cancer%20Cells%20Regulated%20by%20Cell%20Cycle&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Teng,%20Yao&rft.date=2018-07-17&rft.volume=90&rft.issue=14&rft.spage=8370&rft.epage=8378&rft.pages=8370-8378&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b00584&rft_dat=%3Cproquest_cross%3E2054922752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111572109&rft_id=info:pmid/29896956&rfr_iscdi=true