Atmospheric Carbon Mineralization in an Industrial-Scale Chrysotile Mining Waste Pile

Magnesium-rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2018-07, Vol.52 (14), p.8050-8057
Hauptverfasser: Nowamooz, Ali, Dupuis, J. Christian, Beaudoin, Georges, Molson, John, Lemieux, Jean-Michel, Horswill, Micha, Fortier, Richard, Larachi, Faïçal, Maldague, Xavier, Constantin, Marc, Duchesne, Josée, Therrien, René
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8057
container_issue 14
container_start_page 8050
container_title Environmental science & technology
container_volume 52
creator Nowamooz, Ali
Dupuis, J. Christian
Beaudoin, Georges
Molson, John
Lemieux, Jean-Michel
Horswill, Micha
Fortier, Richard
Larachi, Faïçal
Maldague, Xavier
Constantin, Marc
Duchesne, Josée
Therrien, René
description Magnesium-rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an important challenge to its widespread implementation. Through a year-long monitoring experiment performed at a 110 Mt chrysotile waste pile, we have documented the existence of two distinct thermo-hydro-chemical regimes that control the ingress of CO2 and the subsequent mineral carbonation of the waste. The experimental results are supported by a coupled free-air/porous media numerical flow and transport model that provides insights into optimization strategies to increase the efficiency of mineral sequestration at an industrial scale. Although functioning passively under less-than-optimal conditions compared to laboratory-scale experiments, the 110 Mt Thetford Mines pile is nevertheless estimated to be sequestering up to 100 tonnes of CO2 per year, with a potential total carbon capture capacity under optimal conditions of 3 Mt. Annually, more than 100 Mt of ultramafic mine waste suitable for mineral carbonation is generated by the global mining industry. Our results show that this waste material could become a safe and permanent carbon sink for diffuse sources of CO2.
doi_str_mv 10.1021/acs.est.8b01128
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2054920973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2103708727</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-d0f362865a323b831f08d34c67edbcad82793307273b8e543bb6260047aa011a3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7P3qTgRZBuL0l_pMdR_DGYKOjQW3htU5fRtTNpD_OvN2VzB8FTkpfP9_ve-xJySWFMgdEJ5nasbDsWGVDKxBEZ0pCBH4qQHpMhAOV-wqOPATmzdgUAjIM4JQOWiCSgIh6SxbRdN3azVEbnXooma2rvSdfKYKW_sdXuqWsPa29WF51tjcbKf82xUl66NFvbtNpdnUDXn9472lZ5L65yTk5KrKy62J8jsri_e0sf_fnzwyydzn3kiWj9AkoeMRGFyBnPBKcliIIHeRSrIsuxECxOOIeYxe5XhQHPsohFAEGM6PZFPiI3O9-Nab46F4Rca5urqsJaNZ2VDMIgYZDE3KHXf9BV05naTScZBR6D6NuMyGRH5aax1qhSboxeo9lKCrJPXLrEZa_eJ-4UV3vfLlur4sD_RuyA2x3QKw89_7P7ASDZiok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103708727</pqid></control><display><type>article</type><title>Atmospheric Carbon Mineralization in an Industrial-Scale Chrysotile Mining Waste Pile</title><source>ACS Publications</source><creator>Nowamooz, Ali ; Dupuis, J. Christian ; Beaudoin, Georges ; Molson, John ; Lemieux, Jean-Michel ; Horswill, Micha ; Fortier, Richard ; Larachi, Faïçal ; Maldague, Xavier ; Constantin, Marc ; Duchesne, Josée ; Therrien, René</creator><creatorcontrib>Nowamooz, Ali ; Dupuis, J. Christian ; Beaudoin, Georges ; Molson, John ; Lemieux, Jean-Michel ; Horswill, Micha ; Fortier, Richard ; Larachi, Faïçal ; Maldague, Xavier ; Constantin, Marc ; Duchesne, Josée ; Therrien, René</creatorcontrib><description>Magnesium-rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an important challenge to its widespread implementation. Through a year-long monitoring experiment performed at a 110 Mt chrysotile waste pile, we have documented the existence of two distinct thermo-hydro-chemical regimes that control the ingress of CO2 and the subsequent mineral carbonation of the waste. The experimental results are supported by a coupled free-air/porous media numerical flow and transport model that provides insights into optimization strategies to increase the efficiency of mineral sequestration at an industrial scale. Although functioning passively under less-than-optimal conditions compared to laboratory-scale experiments, the 110 Mt Thetford Mines pile is nevertheless estimated to be sequestering up to 100 tonnes of CO2 per year, with a potential total carbon capture capacity under optimal conditions of 3 Mt. Annually, more than 100 Mt of ultramafic mine waste suitable for mineral carbonation is generated by the global mining industry. Our results show that this waste material could become a safe and permanent carbon sink for diffuse sources of CO2.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.8b01128</identifier><identifier>PMID: 29894187</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Asbestos ; Atmosphere ; Carbon ; Carbon dioxide ; Carbon sequestration ; Carbon sinks ; Carbon sources ; Carbonation ; Chrysotile ; Magnesium ; Mathematical models ; Mine wastes ; Mineralization ; Mining ; Mining industry ; Optimization ; Organic chemistry ; Porous media ; Sequestering ; Waste materials</subject><ispartof>Environmental science &amp; technology, 2018-07, Vol.52 (14), p.8050-8057</ispartof><rights>Copyright American Chemical Society Jul 17, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-d0f362865a323b831f08d34c67edbcad82793307273b8e543bb6260047aa011a3</citedby><cites>FETCH-LOGICAL-a398t-d0f362865a323b831f08d34c67edbcad82793307273b8e543bb6260047aa011a3</cites><orcidid>0000-0002-0127-4738 ; 0000-0001-8280-7550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.8b01128$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.8b01128$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29894187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nowamooz, Ali</creatorcontrib><creatorcontrib>Dupuis, J. Christian</creatorcontrib><creatorcontrib>Beaudoin, Georges</creatorcontrib><creatorcontrib>Molson, John</creatorcontrib><creatorcontrib>Lemieux, Jean-Michel</creatorcontrib><creatorcontrib>Horswill, Micha</creatorcontrib><creatorcontrib>Fortier, Richard</creatorcontrib><creatorcontrib>Larachi, Faïçal</creatorcontrib><creatorcontrib>Maldague, Xavier</creatorcontrib><creatorcontrib>Constantin, Marc</creatorcontrib><creatorcontrib>Duchesne, Josée</creatorcontrib><creatorcontrib>Therrien, René</creatorcontrib><title>Atmospheric Carbon Mineralization in an Industrial-Scale Chrysotile Mining Waste Pile</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Magnesium-rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an important challenge to its widespread implementation. Through a year-long monitoring experiment performed at a 110 Mt chrysotile waste pile, we have documented the existence of two distinct thermo-hydro-chemical regimes that control the ingress of CO2 and the subsequent mineral carbonation of the waste. The experimental results are supported by a coupled free-air/porous media numerical flow and transport model that provides insights into optimization strategies to increase the efficiency of mineral sequestration at an industrial scale. Although functioning passively under less-than-optimal conditions compared to laboratory-scale experiments, the 110 Mt Thetford Mines pile is nevertheless estimated to be sequestering up to 100 tonnes of CO2 per year, with a potential total carbon capture capacity under optimal conditions of 3 Mt. Annually, more than 100 Mt of ultramafic mine waste suitable for mineral carbonation is generated by the global mining industry. Our results show that this waste material could become a safe and permanent carbon sink for diffuse sources of CO2.</description><subject>Asbestos</subject><subject>Atmosphere</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Carbon sinks</subject><subject>Carbon sources</subject><subject>Carbonation</subject><subject>Chrysotile</subject><subject>Magnesium</subject><subject>Mathematical models</subject><subject>Mine wastes</subject><subject>Mineralization</subject><subject>Mining</subject><subject>Mining industry</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Porous media</subject><subject>Sequestering</subject><subject>Waste materials</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk7P3qTgRZBuL0l_pMdR_DGYKOjQW3htU5fRtTNpD_OvN2VzB8FTkpfP9_ve-xJySWFMgdEJ5nasbDsWGVDKxBEZ0pCBH4qQHpMhAOV-wqOPATmzdgUAjIM4JQOWiCSgIh6SxbRdN3azVEbnXooma2rvSdfKYKW_sdXuqWsPa29WF51tjcbKf82xUl66NFvbtNpdnUDXn9472lZ5L65yTk5KrKy62J8jsri_e0sf_fnzwyydzn3kiWj9AkoeMRGFyBnPBKcliIIHeRSrIsuxECxOOIeYxe5XhQHPsohFAEGM6PZFPiI3O9-Nab46F4Rca5urqsJaNZ2VDMIgYZDE3KHXf9BV05naTScZBR6D6NuMyGRH5aax1qhSboxeo9lKCrJPXLrEZa_eJ-4UV3vfLlur4sD_RuyA2x3QKw89_7P7ASDZiok</recordid><startdate>20180717</startdate><enddate>20180717</enddate><creator>Nowamooz, Ali</creator><creator>Dupuis, J. Christian</creator><creator>Beaudoin, Georges</creator><creator>Molson, John</creator><creator>Lemieux, Jean-Michel</creator><creator>Horswill, Micha</creator><creator>Fortier, Richard</creator><creator>Larachi, Faïçal</creator><creator>Maldague, Xavier</creator><creator>Constantin, Marc</creator><creator>Duchesne, Josée</creator><creator>Therrien, René</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0127-4738</orcidid><orcidid>https://orcid.org/0000-0001-8280-7550</orcidid></search><sort><creationdate>20180717</creationdate><title>Atmospheric Carbon Mineralization in an Industrial-Scale Chrysotile Mining Waste Pile</title><author>Nowamooz, Ali ; Dupuis, J. Christian ; Beaudoin, Georges ; Molson, John ; Lemieux, Jean-Michel ; Horswill, Micha ; Fortier, Richard ; Larachi, Faïçal ; Maldague, Xavier ; Constantin, Marc ; Duchesne, Josée ; Therrien, René</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-d0f362865a323b831f08d34c67edbcad82793307273b8e543bb6260047aa011a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asbestos</topic><topic>Atmosphere</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Carbon sinks</topic><topic>Carbon sources</topic><topic>Carbonation</topic><topic>Chrysotile</topic><topic>Magnesium</topic><topic>Mathematical models</topic><topic>Mine wastes</topic><topic>Mineralization</topic><topic>Mining</topic><topic>Mining industry</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Porous media</topic><topic>Sequestering</topic><topic>Waste materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowamooz, Ali</creatorcontrib><creatorcontrib>Dupuis, J. Christian</creatorcontrib><creatorcontrib>Beaudoin, Georges</creatorcontrib><creatorcontrib>Molson, John</creatorcontrib><creatorcontrib>Lemieux, Jean-Michel</creatorcontrib><creatorcontrib>Horswill, Micha</creatorcontrib><creatorcontrib>Fortier, Richard</creatorcontrib><creatorcontrib>Larachi, Faïçal</creatorcontrib><creatorcontrib>Maldague, Xavier</creatorcontrib><creatorcontrib>Constantin, Marc</creatorcontrib><creatorcontrib>Duchesne, Josée</creatorcontrib><creatorcontrib>Therrien, René</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowamooz, Ali</au><au>Dupuis, J. Christian</au><au>Beaudoin, Georges</au><au>Molson, John</au><au>Lemieux, Jean-Michel</au><au>Horswill, Micha</au><au>Fortier, Richard</au><au>Larachi, Faïçal</au><au>Maldague, Xavier</au><au>Constantin, Marc</au><au>Duchesne, Josée</au><au>Therrien, René</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric Carbon Mineralization in an Industrial-Scale Chrysotile Mining Waste Pile</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2018-07-17</date><risdate>2018</risdate><volume>52</volume><issue>14</issue><spage>8050</spage><epage>8057</epage><pages>8050-8057</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Magnesium-rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an important challenge to its widespread implementation. Through a year-long monitoring experiment performed at a 110 Mt chrysotile waste pile, we have documented the existence of two distinct thermo-hydro-chemical regimes that control the ingress of CO2 and the subsequent mineral carbonation of the waste. The experimental results are supported by a coupled free-air/porous media numerical flow and transport model that provides insights into optimization strategies to increase the efficiency of mineral sequestration at an industrial scale. Although functioning passively under less-than-optimal conditions compared to laboratory-scale experiments, the 110 Mt Thetford Mines pile is nevertheless estimated to be sequestering up to 100 tonnes of CO2 per year, with a potential total carbon capture capacity under optimal conditions of 3 Mt. Annually, more than 100 Mt of ultramafic mine waste suitable for mineral carbonation is generated by the global mining industry. Our results show that this waste material could become a safe and permanent carbon sink for diffuse sources of CO2.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29894187</pmid><doi>10.1021/acs.est.8b01128</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0127-4738</orcidid><orcidid>https://orcid.org/0000-0001-8280-7550</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2018-07, Vol.52 (14), p.8050-8057
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2054920973
source ACS Publications
subjects Asbestos
Atmosphere
Carbon
Carbon dioxide
Carbon sequestration
Carbon sinks
Carbon sources
Carbonation
Chrysotile
Magnesium
Mathematical models
Mine wastes
Mineralization
Mining
Mining industry
Optimization
Organic chemistry
Porous media
Sequestering
Waste materials
title Atmospheric Carbon Mineralization in an Industrial-Scale Chrysotile Mining Waste Pile
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20Carbon%20Mineralization%20in%20an%20Industrial-Scale%20Chrysotile%20Mining%20Waste%20Pile&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Nowamooz,%20Ali&rft.date=2018-07-17&rft.volume=52&rft.issue=14&rft.spage=8050&rft.epage=8057&rft.pages=8050-8057&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.8b01128&rft_dat=%3Cproquest_cross%3E2103708727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103708727&rft_id=info:pmid/29894187&rfr_iscdi=true