Atmospheric Carbon Mineralization in an Industrial-Scale Chrysotile Mining Waste Pile
Magnesium-rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an im...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2018-07, Vol.52 (14), p.8050-8057 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8057 |
---|---|
container_issue | 14 |
container_start_page | 8050 |
container_title | Environmental science & technology |
container_volume | 52 |
creator | Nowamooz, Ali Dupuis, J. Christian Beaudoin, Georges Molson, John Lemieux, Jean-Michel Horswill, Micha Fortier, Richard Larachi, Faïçal Maldague, Xavier Constantin, Marc Duchesne, Josée Therrien, René |
description | Magnesium-rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an important challenge to its widespread implementation. Through a year-long monitoring experiment performed at a 110 Mt chrysotile waste pile, we have documented the existence of two distinct thermo-hydro-chemical regimes that control the ingress of CO2 and the subsequent mineral carbonation of the waste. The experimental results are supported by a coupled free-air/porous media numerical flow and transport model that provides insights into optimization strategies to increase the efficiency of mineral sequestration at an industrial scale. Although functioning passively under less-than-optimal conditions compared to laboratory-scale experiments, the 110 Mt Thetford Mines pile is nevertheless estimated to be sequestering up to 100 tonnes of CO2 per year, with a potential total carbon capture capacity under optimal conditions of 3 Mt. Annually, more than 100 Mt of ultramafic mine waste suitable for mineral carbonation is generated by the global mining industry. Our results show that this waste material could become a safe and permanent carbon sink for diffuse sources of CO2. |
doi_str_mv | 10.1021/acs.est.8b01128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2054920973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2103708727</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-d0f362865a323b831f08d34c67edbcad82793307273b8e543bb6260047aa011a3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7P3qTgRZBuL0l_pMdR_DGYKOjQW3htU5fRtTNpD_OvN2VzB8FTkpfP9_ve-xJySWFMgdEJ5nasbDsWGVDKxBEZ0pCBH4qQHpMhAOV-wqOPATmzdgUAjIM4JQOWiCSgIh6SxbRdN3azVEbnXooma2rvSdfKYKW_sdXuqWsPa29WF51tjcbKf82xUl66NFvbtNpdnUDXn9472lZ5L65yTk5KrKy62J8jsri_e0sf_fnzwyydzn3kiWj9AkoeMRGFyBnPBKcliIIHeRSrIsuxECxOOIeYxe5XhQHPsohFAEGM6PZFPiI3O9-Nab46F4Rca5urqsJaNZ2VDMIgYZDE3KHXf9BV05naTScZBR6D6NuMyGRH5aax1qhSboxeo9lKCrJPXLrEZa_eJ-4UV3vfLlur4sD_RuyA2x3QKw89_7P7ASDZiok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103708727</pqid></control><display><type>article</type><title>Atmospheric Carbon Mineralization in an Industrial-Scale Chrysotile Mining Waste Pile</title><source>ACS Publications</source><creator>Nowamooz, Ali ; Dupuis, J. Christian ; Beaudoin, Georges ; Molson, John ; Lemieux, Jean-Michel ; Horswill, Micha ; Fortier, Richard ; Larachi, Faïçal ; Maldague, Xavier ; Constantin, Marc ; Duchesne, Josée ; Therrien, René</creator><creatorcontrib>Nowamooz, Ali ; Dupuis, J. Christian ; Beaudoin, Georges ; Molson, John ; Lemieux, Jean-Michel ; Horswill, Micha ; Fortier, Richard ; Larachi, Faïçal ; Maldague, Xavier ; Constantin, Marc ; Duchesne, Josée ; Therrien, René</creatorcontrib><description>Magnesium-rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an important challenge to its widespread implementation. Through a year-long monitoring experiment performed at a 110 Mt chrysotile waste pile, we have documented the existence of two distinct thermo-hydro-chemical regimes that control the ingress of CO2 and the subsequent mineral carbonation of the waste. The experimental results are supported by a coupled free-air/porous media numerical flow and transport model that provides insights into optimization strategies to increase the efficiency of mineral sequestration at an industrial scale. Although functioning passively under less-than-optimal conditions compared to laboratory-scale experiments, the 110 Mt Thetford Mines pile is nevertheless estimated to be sequestering up to 100 tonnes of CO2 per year, with a potential total carbon capture capacity under optimal conditions of 3 Mt. Annually, more than 100 Mt of ultramafic mine waste suitable for mineral carbonation is generated by the global mining industry. Our results show that this waste material could become a safe and permanent carbon sink for diffuse sources of CO2.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.8b01128</identifier><identifier>PMID: 29894187</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Asbestos ; Atmosphere ; Carbon ; Carbon dioxide ; Carbon sequestration ; Carbon sinks ; Carbon sources ; Carbonation ; Chrysotile ; Magnesium ; Mathematical models ; Mine wastes ; Mineralization ; Mining ; Mining industry ; Optimization ; Organic chemistry ; Porous media ; Sequestering ; Waste materials</subject><ispartof>Environmental science & technology, 2018-07, Vol.52 (14), p.8050-8057</ispartof><rights>Copyright American Chemical Society Jul 17, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-d0f362865a323b831f08d34c67edbcad82793307273b8e543bb6260047aa011a3</citedby><cites>FETCH-LOGICAL-a398t-d0f362865a323b831f08d34c67edbcad82793307273b8e543bb6260047aa011a3</cites><orcidid>0000-0002-0127-4738 ; 0000-0001-8280-7550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.8b01128$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.8b01128$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29894187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nowamooz, Ali</creatorcontrib><creatorcontrib>Dupuis, J. Christian</creatorcontrib><creatorcontrib>Beaudoin, Georges</creatorcontrib><creatorcontrib>Molson, John</creatorcontrib><creatorcontrib>Lemieux, Jean-Michel</creatorcontrib><creatorcontrib>Horswill, Micha</creatorcontrib><creatorcontrib>Fortier, Richard</creatorcontrib><creatorcontrib>Larachi, Faïçal</creatorcontrib><creatorcontrib>Maldague, Xavier</creatorcontrib><creatorcontrib>Constantin, Marc</creatorcontrib><creatorcontrib>Duchesne, Josée</creatorcontrib><creatorcontrib>Therrien, René</creatorcontrib><title>Atmospheric Carbon Mineralization in an Industrial-Scale Chrysotile Mining Waste Pile</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Magnesium-rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an important challenge to its widespread implementation. Through a year-long monitoring experiment performed at a 110 Mt chrysotile waste pile, we have documented the existence of two distinct thermo-hydro-chemical regimes that control the ingress of CO2 and the subsequent mineral carbonation of the waste. The experimental results are supported by a coupled free-air/porous media numerical flow and transport model that provides insights into optimization strategies to increase the efficiency of mineral sequestration at an industrial scale. Although functioning passively under less-than-optimal conditions compared to laboratory-scale experiments, the 110 Mt Thetford Mines pile is nevertheless estimated to be sequestering up to 100 tonnes of CO2 per year, with a potential total carbon capture capacity under optimal conditions of 3 Mt. Annually, more than 100 Mt of ultramafic mine waste suitable for mineral carbonation is generated by the global mining industry. Our results show that this waste material could become a safe and permanent carbon sink for diffuse sources of CO2.</description><subject>Asbestos</subject><subject>Atmosphere</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Carbon sinks</subject><subject>Carbon sources</subject><subject>Carbonation</subject><subject>Chrysotile</subject><subject>Magnesium</subject><subject>Mathematical models</subject><subject>Mine wastes</subject><subject>Mineralization</subject><subject>Mining</subject><subject>Mining industry</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Porous media</subject><subject>Sequestering</subject><subject>Waste materials</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk7P3qTgRZBuL0l_pMdR_DGYKOjQW3htU5fRtTNpD_OvN2VzB8FTkpfP9_ve-xJySWFMgdEJ5nasbDsWGVDKxBEZ0pCBH4qQHpMhAOV-wqOPATmzdgUAjIM4JQOWiCSgIh6SxbRdN3azVEbnXooma2rvSdfKYKW_sdXuqWsPa29WF51tjcbKf82xUl66NFvbtNpdnUDXn9472lZ5L65yTk5KrKy62J8jsri_e0sf_fnzwyydzn3kiWj9AkoeMRGFyBnPBKcliIIHeRSrIsuxECxOOIeYxe5XhQHPsohFAEGM6PZFPiI3O9-Nab46F4Rca5urqsJaNZ2VDMIgYZDE3KHXf9BV05naTScZBR6D6NuMyGRH5aax1qhSboxeo9lKCrJPXLrEZa_eJ-4UV3vfLlur4sD_RuyA2x3QKw89_7P7ASDZiok</recordid><startdate>20180717</startdate><enddate>20180717</enddate><creator>Nowamooz, Ali</creator><creator>Dupuis, J. Christian</creator><creator>Beaudoin, Georges</creator><creator>Molson, John</creator><creator>Lemieux, Jean-Michel</creator><creator>Horswill, Micha</creator><creator>Fortier, Richard</creator><creator>Larachi, Faïçal</creator><creator>Maldague, Xavier</creator><creator>Constantin, Marc</creator><creator>Duchesne, Josée</creator><creator>Therrien, René</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0127-4738</orcidid><orcidid>https://orcid.org/0000-0001-8280-7550</orcidid></search><sort><creationdate>20180717</creationdate><title>Atmospheric Carbon Mineralization in an Industrial-Scale Chrysotile Mining Waste Pile</title><author>Nowamooz, Ali ; Dupuis, J. Christian ; Beaudoin, Georges ; Molson, John ; Lemieux, Jean-Michel ; Horswill, Micha ; Fortier, Richard ; Larachi, Faïçal ; Maldague, Xavier ; Constantin, Marc ; Duchesne, Josée ; Therrien, René</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-d0f362865a323b831f08d34c67edbcad82793307273b8e543bb6260047aa011a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asbestos</topic><topic>Atmosphere</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Carbon sinks</topic><topic>Carbon sources</topic><topic>Carbonation</topic><topic>Chrysotile</topic><topic>Magnesium</topic><topic>Mathematical models</topic><topic>Mine wastes</topic><topic>Mineralization</topic><topic>Mining</topic><topic>Mining industry</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Porous media</topic><topic>Sequestering</topic><topic>Waste materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowamooz, Ali</creatorcontrib><creatorcontrib>Dupuis, J. Christian</creatorcontrib><creatorcontrib>Beaudoin, Georges</creatorcontrib><creatorcontrib>Molson, John</creatorcontrib><creatorcontrib>Lemieux, Jean-Michel</creatorcontrib><creatorcontrib>Horswill, Micha</creatorcontrib><creatorcontrib>Fortier, Richard</creatorcontrib><creatorcontrib>Larachi, Faïçal</creatorcontrib><creatorcontrib>Maldague, Xavier</creatorcontrib><creatorcontrib>Constantin, Marc</creatorcontrib><creatorcontrib>Duchesne, Josée</creatorcontrib><creatorcontrib>Therrien, René</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowamooz, Ali</au><au>Dupuis, J. Christian</au><au>Beaudoin, Georges</au><au>Molson, John</au><au>Lemieux, Jean-Michel</au><au>Horswill, Micha</au><au>Fortier, Richard</au><au>Larachi, Faïçal</au><au>Maldague, Xavier</au><au>Constantin, Marc</au><au>Duchesne, Josée</au><au>Therrien, René</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric Carbon Mineralization in an Industrial-Scale Chrysotile Mining Waste Pile</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2018-07-17</date><risdate>2018</risdate><volume>52</volume><issue>14</issue><spage>8050</spage><epage>8057</epage><pages>8050-8057</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Magnesium-rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an important challenge to its widespread implementation. Through a year-long monitoring experiment performed at a 110 Mt chrysotile waste pile, we have documented the existence of two distinct thermo-hydro-chemical regimes that control the ingress of CO2 and the subsequent mineral carbonation of the waste. The experimental results are supported by a coupled free-air/porous media numerical flow and transport model that provides insights into optimization strategies to increase the efficiency of mineral sequestration at an industrial scale. Although functioning passively under less-than-optimal conditions compared to laboratory-scale experiments, the 110 Mt Thetford Mines pile is nevertheless estimated to be sequestering up to 100 tonnes of CO2 per year, with a potential total carbon capture capacity under optimal conditions of 3 Mt. Annually, more than 100 Mt of ultramafic mine waste suitable for mineral carbonation is generated by the global mining industry. Our results show that this waste material could become a safe and permanent carbon sink for diffuse sources of CO2.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29894187</pmid><doi>10.1021/acs.est.8b01128</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0127-4738</orcidid><orcidid>https://orcid.org/0000-0001-8280-7550</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2018-07, Vol.52 (14), p.8050-8057 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2054920973 |
source | ACS Publications |
subjects | Asbestos Atmosphere Carbon Carbon dioxide Carbon sequestration Carbon sinks Carbon sources Carbonation Chrysotile Magnesium Mathematical models Mine wastes Mineralization Mining Mining industry Optimization Organic chemistry Porous media Sequestering Waste materials |
title | Atmospheric Carbon Mineralization in an Industrial-Scale Chrysotile Mining Waste Pile |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20Carbon%20Mineralization%20in%20an%20Industrial-Scale%20Chrysotile%20Mining%20Waste%20Pile&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Nowamooz,%20Ali&rft.date=2018-07-17&rft.volume=52&rft.issue=14&rft.spage=8050&rft.epage=8057&rft.pages=8050-8057&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.8b01128&rft_dat=%3Cproquest_cross%3E2103708727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103708727&rft_id=info:pmid/29894187&rfr_iscdi=true |