Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption
Traditionally used as an angiogenic assay, the chorioallantoic membrane (CAM) assay of the chick embryo offers significant potential as an in vivo model for xenograft organ culture. Viable human bone can be cultivated on the CAM and increases in bone volume are evident; however, it remains unclear b...
Gespeichert in:
Veröffentlicht in: | Journal of tissue engineering and regenerative medicine 2018-08, Vol.12 (8), p.1877-1890 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1890 |
---|---|
container_issue | 8 |
container_start_page | 1877 |
container_title | Journal of tissue engineering and regenerative medicine |
container_volume | 12 |
creator | Moreno‐Jiménez, Inés Lanham, Stuart A. Kanczler, Janos M. Hulsart‐Billstrom, Gry Evans, Nicholas D. Oreffo, Richard O.C. |
description | Traditionally used as an angiogenic assay, the chorioallantoic membrane (CAM) assay of the chick embryo offers significant potential as an in vivo model for xenograft organ culture. Viable human bone can be cultivated on the CAM and increases in bone volume are evident; however, it remains unclear by what mechanism this change occurs and whether this reflects the physiological process of bone remodelling. In this study we tested the hypothesis that CAM‐induced bone remodelling is a consequence of host and graft mediated processes. Bone cylinders harvested from femoral heads post surgery were placed on the CAM of green fluorescent protein (GFP)‐chick embryos for 9 days, followed by micro computed tomography (μCT) and histological analysis. Three‐dimensional registration of consecutive μCT‐scans showed newly mineralised tissue in CAM‐implanted bone cylinders, as well as new osteoid deposition histologically. Immunohistochemistry demonstrated the presence of bone resorption and formation markers (Cathepsin K, SOX9 and RUNX2) co‐localising with GFP staining, expressed by avian cells only. To investigate the role of the human cells in the process of bone formation, decellularised bone cylinders were implanted on the CAM and comparable increases in bone volume were observed, indicating that avian cells were responsible for the bone mineralisation process. Finally, CAM‐implantation of acellular collagen sponges, containing bone morphogenetic protein 2, resulted in the deposition of extracellular matrix and tissue mineralisation. These studies indicate that the CAM can respond to osteogenic stimuli and support formation or resorption of implanted human bone, providing a humanised CAM model for regenerative medicine research and a novel short‐term in vivo model for tissue engineering and biomaterial testing. |
doi_str_mv | 10.1002/term.2711 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2054920904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085967598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3791-fb29f40cfa9ad4c7d5a56af83fc25043c4b91c64c07cccba2d8be1d0f4c806483</originalsourceid><addsrcrecordid>eNp1kU1PxCAQhonR-LF68A8YEi96WBcotMWbWT8TjclGzw2lw261wAqtxn9v664eTDwNwzx5MvAidEjJGSWETVoI9oxllG6gXSoTNs4IEZvrc8oE30F7Mb70lyIVyTbaYTKXCc_yXRRnYH0FTVO7OfYGLzqrHC69A-wdbheA9cKH2qumUa71tcYWbBnUMDfrea1fwWGYz8_xJWDn3_1KYHywqq17j3IVDhB9WA7tPtoyqolwsK4j9Hx99TS9Hd8_3txNL-7HOskkHZuSScOJNkqqiuusEkqkyuSJ0UwQnmheSqpTrkmmtS4Vq_ISaEUM1zlJeZ6M0MnKuwz-rYPYFraOGoaXgO9iwYjgkhHZu0bo-A_64rvg-u16KhcyzYQchKcrSgcfYwBTLENtVfgsKCmGJIohiWJIomeP1sautFD9kj9f3wOTFfBRN_D5v6l4upo9fCu_AFxSlF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085967598</pqid></control><display><type>article</type><title>Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Moreno‐Jiménez, Inés ; Lanham, Stuart A. ; Kanczler, Janos M. ; Hulsart‐Billstrom, Gry ; Evans, Nicholas D. ; Oreffo, Richard O.C.</creator><creatorcontrib>Moreno‐Jiménez, Inés ; Lanham, Stuart A. ; Kanczler, Janos M. ; Hulsart‐Billstrom, Gry ; Evans, Nicholas D. ; Oreffo, Richard O.C.</creatorcontrib><description>Traditionally used as an angiogenic assay, the chorioallantoic membrane (CAM) assay of the chick embryo offers significant potential as an in vivo model for xenograft organ culture. Viable human bone can be cultivated on the CAM and increases in bone volume are evident; however, it remains unclear by what mechanism this change occurs and whether this reflects the physiological process of bone remodelling. In this study we tested the hypothesis that CAM‐induced bone remodelling is a consequence of host and graft mediated processes. Bone cylinders harvested from femoral heads post surgery were placed on the CAM of green fluorescent protein (GFP)‐chick embryos for 9 days, followed by micro computed tomography (μCT) and histological analysis. Three‐dimensional registration of consecutive μCT‐scans showed newly mineralised tissue in CAM‐implanted bone cylinders, as well as new osteoid deposition histologically. Immunohistochemistry demonstrated the presence of bone resorption and formation markers (Cathepsin K, SOX9 and RUNX2) co‐localising with GFP staining, expressed by avian cells only. To investigate the role of the human cells in the process of bone formation, decellularised bone cylinders were implanted on the CAM and comparable increases in bone volume were observed, indicating that avian cells were responsible for the bone mineralisation process. Finally, CAM‐implantation of acellular collagen sponges, containing bone morphogenetic protein 2, resulted in the deposition of extracellular matrix and tissue mineralisation. These studies indicate that the CAM can respond to osteogenic stimuli and support formation or resorption of implanted human bone, providing a humanised CAM model for regenerative medicine research and a novel short‐term in vivo model for tissue engineering and biomaterial testing.</description><identifier>ISSN: 1932-6254</identifier><identifier>EISSN: 1932-7005</identifier><identifier>DOI: 10.1002/term.2711</identifier><identifier>PMID: 29893478</identifier><language>eng</language><publisher>England: Hindawi Limited</publisher><subject>3D registration, in vivo ; Aged ; Aged, 80 and over ; Angiogenesis ; Animals ; Avian cells ; Biocompatibility ; Biomaterials ; Biomedical materials ; BMP2, preclinical model ; Bone grafts ; Bone growth ; Bone morphogenetic protein 2 ; Bone remodeling ; Bone Resorption ; Bone surgery ; Cathepsin K ; Cbfa-1 protein ; Cell culture ; Chick Embryo ; Chorioallantoic membrane ; chorioallantoic membrane (CAM assay) ; Chorioallantoic Membrane - metabolism ; Collagen ; Computed tomography ; Cylinders ; Deposition ; Dimensional analysis ; Embryos ; Extracellular matrix ; Female ; Femur ; Fluorescence ; Green fluorescent protein ; Heterografts ; human bone ; Humans ; Immunohistochemistry ; Implantation ; In vivo methods and tests ; Male ; micro computed tomography (μCT) ; Middle Aged ; Mineralization ; Organ culture ; Osteogenesis ; Osteoid ; Poultry ; Proteins ; Regenerative medicine ; Surgical implants ; Tissue engineering ; Xenografts ; Xenotransplantation</subject><ispartof>Journal of tissue engineering and regenerative medicine, 2018-08, Vol.12 (8), p.1877-1890</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3791-fb29f40cfa9ad4c7d5a56af83fc25043c4b91c64c07cccba2d8be1d0f4c806483</citedby><cites>FETCH-LOGICAL-c3791-fb29f40cfa9ad4c7d5a56af83fc25043c4b91c64c07cccba2d8be1d0f4c806483</cites><orcidid>0000-0002-0717-3671 ; 0000-0001-5995-6726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fterm.2711$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fterm.2711$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29893478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreno‐Jiménez, Inés</creatorcontrib><creatorcontrib>Lanham, Stuart A.</creatorcontrib><creatorcontrib>Kanczler, Janos M.</creatorcontrib><creatorcontrib>Hulsart‐Billstrom, Gry</creatorcontrib><creatorcontrib>Evans, Nicholas D.</creatorcontrib><creatorcontrib>Oreffo, Richard O.C.</creatorcontrib><title>Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption</title><title>Journal of tissue engineering and regenerative medicine</title><addtitle>J Tissue Eng Regen Med</addtitle><description>Traditionally used as an angiogenic assay, the chorioallantoic membrane (CAM) assay of the chick embryo offers significant potential as an in vivo model for xenograft organ culture. Viable human bone can be cultivated on the CAM and increases in bone volume are evident; however, it remains unclear by what mechanism this change occurs and whether this reflects the physiological process of bone remodelling. In this study we tested the hypothesis that CAM‐induced bone remodelling is a consequence of host and graft mediated processes. Bone cylinders harvested from femoral heads post surgery were placed on the CAM of green fluorescent protein (GFP)‐chick embryos for 9 days, followed by micro computed tomography (μCT) and histological analysis. Three‐dimensional registration of consecutive μCT‐scans showed newly mineralised tissue in CAM‐implanted bone cylinders, as well as new osteoid deposition histologically. Immunohistochemistry demonstrated the presence of bone resorption and formation markers (Cathepsin K, SOX9 and RUNX2) co‐localising with GFP staining, expressed by avian cells only. To investigate the role of the human cells in the process of bone formation, decellularised bone cylinders were implanted on the CAM and comparable increases in bone volume were observed, indicating that avian cells were responsible for the bone mineralisation process. Finally, CAM‐implantation of acellular collagen sponges, containing bone morphogenetic protein 2, resulted in the deposition of extracellular matrix and tissue mineralisation. These studies indicate that the CAM can respond to osteogenic stimuli and support formation or resorption of implanted human bone, providing a humanised CAM model for regenerative medicine research and a novel short‐term in vivo model for tissue engineering and biomaterial testing.</description><subject>3D registration, in vivo</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Avian cells</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>BMP2, preclinical model</subject><subject>Bone grafts</subject><subject>Bone growth</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone remodeling</subject><subject>Bone Resorption</subject><subject>Bone surgery</subject><subject>Cathepsin K</subject><subject>Cbfa-1 protein</subject><subject>Cell culture</subject><subject>Chick Embryo</subject><subject>Chorioallantoic membrane</subject><subject>chorioallantoic membrane (CAM assay)</subject><subject>Chorioallantoic Membrane - metabolism</subject><subject>Collagen</subject><subject>Computed tomography</subject><subject>Cylinders</subject><subject>Deposition</subject><subject>Dimensional analysis</subject><subject>Embryos</subject><subject>Extracellular matrix</subject><subject>Female</subject><subject>Femur</subject><subject>Fluorescence</subject><subject>Green fluorescent protein</subject><subject>Heterografts</subject><subject>human bone</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Implantation</subject><subject>In vivo methods and tests</subject><subject>Male</subject><subject>micro computed tomography (μCT)</subject><subject>Middle Aged</subject><subject>Mineralization</subject><subject>Organ culture</subject><subject>Osteogenesis</subject><subject>Osteoid</subject><subject>Poultry</subject><subject>Proteins</subject><subject>Regenerative medicine</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>1932-6254</issn><issn>1932-7005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1PxCAQhonR-LF68A8YEi96WBcotMWbWT8TjclGzw2lw261wAqtxn9v664eTDwNwzx5MvAidEjJGSWETVoI9oxllG6gXSoTNs4IEZvrc8oE30F7Mb70lyIVyTbaYTKXCc_yXRRnYH0FTVO7OfYGLzqrHC69A-wdbheA9cKH2qumUa71tcYWbBnUMDfrea1fwWGYz8_xJWDn3_1KYHywqq17j3IVDhB9WA7tPtoyqolwsK4j9Hx99TS9Hd8_3txNL-7HOskkHZuSScOJNkqqiuusEkqkyuSJ0UwQnmheSqpTrkmmtS4Vq_ISaEUM1zlJeZ6M0MnKuwz-rYPYFraOGoaXgO9iwYjgkhHZu0bo-A_64rvg-u16KhcyzYQchKcrSgcfYwBTLENtVfgsKCmGJIohiWJIomeP1sautFD9kj9f3wOTFfBRN_D5v6l4upo9fCu_AFxSlF0</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Moreno‐Jiménez, Inés</creator><creator>Lanham, Stuart A.</creator><creator>Kanczler, Janos M.</creator><creator>Hulsart‐Billstrom, Gry</creator><creator>Evans, Nicholas D.</creator><creator>Oreffo, Richard O.C.</creator><general>Hindawi Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0717-3671</orcidid><orcidid>https://orcid.org/0000-0001-5995-6726</orcidid></search><sort><creationdate>201808</creationdate><title>Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption</title><author>Moreno‐Jiménez, Inés ; Lanham, Stuart A. ; Kanczler, Janos M. ; Hulsart‐Billstrom, Gry ; Evans, Nicholas D. ; Oreffo, Richard O.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3791-fb29f40cfa9ad4c7d5a56af83fc25043c4b91c64c07cccba2d8be1d0f4c806483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D registration, in vivo</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Avian cells</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>BMP2, preclinical model</topic><topic>Bone grafts</topic><topic>Bone growth</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone remodeling</topic><topic>Bone Resorption</topic><topic>Bone surgery</topic><topic>Cathepsin K</topic><topic>Cbfa-1 protein</topic><topic>Cell culture</topic><topic>Chick Embryo</topic><topic>Chorioallantoic membrane</topic><topic>chorioallantoic membrane (CAM assay)</topic><topic>Chorioallantoic Membrane - metabolism</topic><topic>Collagen</topic><topic>Computed tomography</topic><topic>Cylinders</topic><topic>Deposition</topic><topic>Dimensional analysis</topic><topic>Embryos</topic><topic>Extracellular matrix</topic><topic>Female</topic><topic>Femur</topic><topic>Fluorescence</topic><topic>Green fluorescent protein</topic><topic>Heterografts</topic><topic>human bone</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Implantation</topic><topic>In vivo methods and tests</topic><topic>Male</topic><topic>micro computed tomography (μCT)</topic><topic>Middle Aged</topic><topic>Mineralization</topic><topic>Organ culture</topic><topic>Osteogenesis</topic><topic>Osteoid</topic><topic>Poultry</topic><topic>Proteins</topic><topic>Regenerative medicine</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno‐Jiménez, Inés</creatorcontrib><creatorcontrib>Lanham, Stuart A.</creatorcontrib><creatorcontrib>Kanczler, Janos M.</creatorcontrib><creatorcontrib>Hulsart‐Billstrom, Gry</creatorcontrib><creatorcontrib>Evans, Nicholas D.</creatorcontrib><creatorcontrib>Oreffo, Richard O.C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of tissue engineering and regenerative medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno‐Jiménez, Inés</au><au>Lanham, Stuart A.</au><au>Kanczler, Janos M.</au><au>Hulsart‐Billstrom, Gry</au><au>Evans, Nicholas D.</au><au>Oreffo, Richard O.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption</atitle><jtitle>Journal of tissue engineering and regenerative medicine</jtitle><addtitle>J Tissue Eng Regen Med</addtitle><date>2018-08</date><risdate>2018</risdate><volume>12</volume><issue>8</issue><spage>1877</spage><epage>1890</epage><pages>1877-1890</pages><issn>1932-6254</issn><eissn>1932-7005</eissn><abstract>Traditionally used as an angiogenic assay, the chorioallantoic membrane (CAM) assay of the chick embryo offers significant potential as an in vivo model for xenograft organ culture. Viable human bone can be cultivated on the CAM and increases in bone volume are evident; however, it remains unclear by what mechanism this change occurs and whether this reflects the physiological process of bone remodelling. In this study we tested the hypothesis that CAM‐induced bone remodelling is a consequence of host and graft mediated processes. Bone cylinders harvested from femoral heads post surgery were placed on the CAM of green fluorescent protein (GFP)‐chick embryos for 9 days, followed by micro computed tomography (μCT) and histological analysis. Three‐dimensional registration of consecutive μCT‐scans showed newly mineralised tissue in CAM‐implanted bone cylinders, as well as new osteoid deposition histologically. Immunohistochemistry demonstrated the presence of bone resorption and formation markers (Cathepsin K, SOX9 and RUNX2) co‐localising with GFP staining, expressed by avian cells only. To investigate the role of the human cells in the process of bone formation, decellularised bone cylinders were implanted on the CAM and comparable increases in bone volume were observed, indicating that avian cells were responsible for the bone mineralisation process. Finally, CAM‐implantation of acellular collagen sponges, containing bone morphogenetic protein 2, resulted in the deposition of extracellular matrix and tissue mineralisation. These studies indicate that the CAM can respond to osteogenic stimuli and support formation or resorption of implanted human bone, providing a humanised CAM model for regenerative medicine research and a novel short‐term in vivo model for tissue engineering and biomaterial testing.</abstract><cop>England</cop><pub>Hindawi Limited</pub><pmid>29893478</pmid><doi>10.1002/term.2711</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0717-3671</orcidid><orcidid>https://orcid.org/0000-0001-5995-6726</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6254 |
ispartof | Journal of tissue engineering and regenerative medicine, 2018-08, Vol.12 (8), p.1877-1890 |
issn | 1932-6254 1932-7005 |
language | eng |
recordid | cdi_proquest_miscellaneous_2054920904 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | 3D registration, in vivo Aged Aged, 80 and over Angiogenesis Animals Avian cells Biocompatibility Biomaterials Biomedical materials BMP2, preclinical model Bone grafts Bone growth Bone morphogenetic protein 2 Bone remodeling Bone Resorption Bone surgery Cathepsin K Cbfa-1 protein Cell culture Chick Embryo Chorioallantoic membrane chorioallantoic membrane (CAM assay) Chorioallantoic Membrane - metabolism Collagen Computed tomography Cylinders Deposition Dimensional analysis Embryos Extracellular matrix Female Femur Fluorescence Green fluorescent protein Heterografts human bone Humans Immunohistochemistry Implantation In vivo methods and tests Male micro computed tomography (μCT) Middle Aged Mineralization Organ culture Osteogenesis Osteoid Poultry Proteins Regenerative medicine Surgical implants Tissue engineering Xenografts Xenotransplantation |
title | Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remodelling%20of%20human%20bone%20on%20the%20chorioallantoic%20membrane%20of%20the%20chicken%20egg:%20De%20novo%20bone%20formation%20and%20resorption&rft.jtitle=Journal%20of%20tissue%20engineering%20and%20regenerative%20medicine&rft.au=Moreno%E2%80%90Jim%C3%A9nez,%20In%C3%A9s&rft.date=2018-08&rft.volume=12&rft.issue=8&rft.spage=1877&rft.epage=1890&rft.pages=1877-1890&rft.issn=1932-6254&rft.eissn=1932-7005&rft_id=info:doi/10.1002/term.2711&rft_dat=%3Cproquest_cross%3E2085967598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085967598&rft_id=info:pmid/29893478&rfr_iscdi=true |