Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption

Traditionally used as an angiogenic assay, the chorioallantoic membrane (CAM) assay of the chick embryo offers significant potential as an in vivo model for xenograft organ culture. Viable human bone can be cultivated on the CAM and increases in bone volume are evident; however, it remains unclear b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of tissue engineering and regenerative medicine 2018-08, Vol.12 (8), p.1877-1890
Hauptverfasser: Moreno‐Jiménez, Inés, Lanham, Stuart A., Kanczler, Janos M., Hulsart‐Billstrom, Gry, Evans, Nicholas D., Oreffo, Richard O.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1890
container_issue 8
container_start_page 1877
container_title Journal of tissue engineering and regenerative medicine
container_volume 12
creator Moreno‐Jiménez, Inés
Lanham, Stuart A.
Kanczler, Janos M.
Hulsart‐Billstrom, Gry
Evans, Nicholas D.
Oreffo, Richard O.C.
description Traditionally used as an angiogenic assay, the chorioallantoic membrane (CAM) assay of the chick embryo offers significant potential as an in vivo model for xenograft organ culture. Viable human bone can be cultivated on the CAM and increases in bone volume are evident; however, it remains unclear by what mechanism this change occurs and whether this reflects the physiological process of bone remodelling. In this study we tested the hypothesis that CAM‐induced bone remodelling is a consequence of host and graft mediated processes. Bone cylinders harvested from femoral heads post surgery were placed on the CAM of green fluorescent protein (GFP)‐chick embryos for 9 days, followed by micro computed tomography (μCT) and histological analysis. Three‐dimensional registration of consecutive μCT‐scans showed newly mineralised tissue in CAM‐implanted bone cylinders, as well as new osteoid deposition histologically. Immunohistochemistry demonstrated the presence of bone resorption and formation markers (Cathepsin K, SOX9 and RUNX2) co‐localising with GFP staining, expressed by avian cells only. To investigate the role of the human cells in the process of bone formation, decellularised bone cylinders were implanted on the CAM and comparable increases in bone volume were observed, indicating that avian cells were responsible for the bone mineralisation process. Finally, CAM‐implantation of acellular collagen sponges, containing bone morphogenetic protein 2, resulted in the deposition of extracellular matrix and tissue mineralisation. These studies indicate that the CAM can respond to osteogenic stimuli and support formation or resorption of implanted human bone, providing a humanised CAM model for regenerative medicine research and a novel short‐term in vivo model for tissue engineering and biomaterial testing.
doi_str_mv 10.1002/term.2711
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2054920904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085967598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3791-fb29f40cfa9ad4c7d5a56af83fc25043c4b91c64c07cccba2d8be1d0f4c806483</originalsourceid><addsrcrecordid>eNp1kU1PxCAQhonR-LF68A8YEi96WBcotMWbWT8TjclGzw2lw261wAqtxn9v664eTDwNwzx5MvAidEjJGSWETVoI9oxllG6gXSoTNs4IEZvrc8oE30F7Mb70lyIVyTbaYTKXCc_yXRRnYH0FTVO7OfYGLzqrHC69A-wdbheA9cKH2qumUa71tcYWbBnUMDfrea1fwWGYz8_xJWDn3_1KYHywqq17j3IVDhB9WA7tPtoyqolwsK4j9Hx99TS9Hd8_3txNL-7HOskkHZuSScOJNkqqiuusEkqkyuSJ0UwQnmheSqpTrkmmtS4Vq_ISaEUM1zlJeZ6M0MnKuwz-rYPYFraOGoaXgO9iwYjgkhHZu0bo-A_64rvg-u16KhcyzYQchKcrSgcfYwBTLENtVfgsKCmGJIohiWJIomeP1sautFD9kj9f3wOTFfBRN_D5v6l4upo9fCu_AFxSlF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085967598</pqid></control><display><type>article</type><title>Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Moreno‐Jiménez, Inés ; Lanham, Stuart A. ; Kanczler, Janos M. ; Hulsart‐Billstrom, Gry ; Evans, Nicholas D. ; Oreffo, Richard O.C.</creator><creatorcontrib>Moreno‐Jiménez, Inés ; Lanham, Stuart A. ; Kanczler, Janos M. ; Hulsart‐Billstrom, Gry ; Evans, Nicholas D. ; Oreffo, Richard O.C.</creatorcontrib><description>Traditionally used as an angiogenic assay, the chorioallantoic membrane (CAM) assay of the chick embryo offers significant potential as an in vivo model for xenograft organ culture. Viable human bone can be cultivated on the CAM and increases in bone volume are evident; however, it remains unclear by what mechanism this change occurs and whether this reflects the physiological process of bone remodelling. In this study we tested the hypothesis that CAM‐induced bone remodelling is a consequence of host and graft mediated processes. Bone cylinders harvested from femoral heads post surgery were placed on the CAM of green fluorescent protein (GFP)‐chick embryos for 9 days, followed by micro computed tomography (μCT) and histological analysis. Three‐dimensional registration of consecutive μCT‐scans showed newly mineralised tissue in CAM‐implanted bone cylinders, as well as new osteoid deposition histologically. Immunohistochemistry demonstrated the presence of bone resorption and formation markers (Cathepsin K, SOX9 and RUNX2) co‐localising with GFP staining, expressed by avian cells only. To investigate the role of the human cells in the process of bone formation, decellularised bone cylinders were implanted on the CAM and comparable increases in bone volume were observed, indicating that avian cells were responsible for the bone mineralisation process. Finally, CAM‐implantation of acellular collagen sponges, containing bone morphogenetic protein 2, resulted in the deposition of extracellular matrix and tissue mineralisation. These studies indicate that the CAM can respond to osteogenic stimuli and support formation or resorption of implanted human bone, providing a humanised CAM model for regenerative medicine research and a novel short‐term in vivo model for tissue engineering and biomaterial testing.</description><identifier>ISSN: 1932-6254</identifier><identifier>EISSN: 1932-7005</identifier><identifier>DOI: 10.1002/term.2711</identifier><identifier>PMID: 29893478</identifier><language>eng</language><publisher>England: Hindawi Limited</publisher><subject>3D registration, in vivo ; Aged ; Aged, 80 and over ; Angiogenesis ; Animals ; Avian cells ; Biocompatibility ; Biomaterials ; Biomedical materials ; BMP2, preclinical model ; Bone grafts ; Bone growth ; Bone morphogenetic protein 2 ; Bone remodeling ; Bone Resorption ; Bone surgery ; Cathepsin K ; Cbfa-1 protein ; Cell culture ; Chick Embryo ; Chorioallantoic membrane ; chorioallantoic membrane (CAM assay) ; Chorioallantoic Membrane - metabolism ; Collagen ; Computed tomography ; Cylinders ; Deposition ; Dimensional analysis ; Embryos ; Extracellular matrix ; Female ; Femur ; Fluorescence ; Green fluorescent protein ; Heterografts ; human bone ; Humans ; Immunohistochemistry ; Implantation ; In vivo methods and tests ; Male ; micro computed tomography (μCT) ; Middle Aged ; Mineralization ; Organ culture ; Osteogenesis ; Osteoid ; Poultry ; Proteins ; Regenerative medicine ; Surgical implants ; Tissue engineering ; Xenografts ; Xenotransplantation</subject><ispartof>Journal of tissue engineering and regenerative medicine, 2018-08, Vol.12 (8), p.1877-1890</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3791-fb29f40cfa9ad4c7d5a56af83fc25043c4b91c64c07cccba2d8be1d0f4c806483</citedby><cites>FETCH-LOGICAL-c3791-fb29f40cfa9ad4c7d5a56af83fc25043c4b91c64c07cccba2d8be1d0f4c806483</cites><orcidid>0000-0002-0717-3671 ; 0000-0001-5995-6726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fterm.2711$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fterm.2711$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29893478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreno‐Jiménez, Inés</creatorcontrib><creatorcontrib>Lanham, Stuart A.</creatorcontrib><creatorcontrib>Kanczler, Janos M.</creatorcontrib><creatorcontrib>Hulsart‐Billstrom, Gry</creatorcontrib><creatorcontrib>Evans, Nicholas D.</creatorcontrib><creatorcontrib>Oreffo, Richard O.C.</creatorcontrib><title>Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption</title><title>Journal of tissue engineering and regenerative medicine</title><addtitle>J Tissue Eng Regen Med</addtitle><description>Traditionally used as an angiogenic assay, the chorioallantoic membrane (CAM) assay of the chick embryo offers significant potential as an in vivo model for xenograft organ culture. Viable human bone can be cultivated on the CAM and increases in bone volume are evident; however, it remains unclear by what mechanism this change occurs and whether this reflects the physiological process of bone remodelling. In this study we tested the hypothesis that CAM‐induced bone remodelling is a consequence of host and graft mediated processes. Bone cylinders harvested from femoral heads post surgery were placed on the CAM of green fluorescent protein (GFP)‐chick embryos for 9 days, followed by micro computed tomography (μCT) and histological analysis. Three‐dimensional registration of consecutive μCT‐scans showed newly mineralised tissue in CAM‐implanted bone cylinders, as well as new osteoid deposition histologically. Immunohistochemistry demonstrated the presence of bone resorption and formation markers (Cathepsin K, SOX9 and RUNX2) co‐localising with GFP staining, expressed by avian cells only. To investigate the role of the human cells in the process of bone formation, decellularised bone cylinders were implanted on the CAM and comparable increases in bone volume were observed, indicating that avian cells were responsible for the bone mineralisation process. Finally, CAM‐implantation of acellular collagen sponges, containing bone morphogenetic protein 2, resulted in the deposition of extracellular matrix and tissue mineralisation. These studies indicate that the CAM can respond to osteogenic stimuli and support formation or resorption of implanted human bone, providing a humanised CAM model for regenerative medicine research and a novel short‐term in vivo model for tissue engineering and biomaterial testing.</description><subject>3D registration, in vivo</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Avian cells</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>BMP2, preclinical model</subject><subject>Bone grafts</subject><subject>Bone growth</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone remodeling</subject><subject>Bone Resorption</subject><subject>Bone surgery</subject><subject>Cathepsin K</subject><subject>Cbfa-1 protein</subject><subject>Cell culture</subject><subject>Chick Embryo</subject><subject>Chorioallantoic membrane</subject><subject>chorioallantoic membrane (CAM assay)</subject><subject>Chorioallantoic Membrane - metabolism</subject><subject>Collagen</subject><subject>Computed tomography</subject><subject>Cylinders</subject><subject>Deposition</subject><subject>Dimensional analysis</subject><subject>Embryos</subject><subject>Extracellular matrix</subject><subject>Female</subject><subject>Femur</subject><subject>Fluorescence</subject><subject>Green fluorescent protein</subject><subject>Heterografts</subject><subject>human bone</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Implantation</subject><subject>In vivo methods and tests</subject><subject>Male</subject><subject>micro computed tomography (μCT)</subject><subject>Middle Aged</subject><subject>Mineralization</subject><subject>Organ culture</subject><subject>Osteogenesis</subject><subject>Osteoid</subject><subject>Poultry</subject><subject>Proteins</subject><subject>Regenerative medicine</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>1932-6254</issn><issn>1932-7005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1PxCAQhonR-LF68A8YEi96WBcotMWbWT8TjclGzw2lw261wAqtxn9v664eTDwNwzx5MvAidEjJGSWETVoI9oxllG6gXSoTNs4IEZvrc8oE30F7Mb70lyIVyTbaYTKXCc_yXRRnYH0FTVO7OfYGLzqrHC69A-wdbheA9cKH2qumUa71tcYWbBnUMDfrea1fwWGYz8_xJWDn3_1KYHywqq17j3IVDhB9WA7tPtoyqolwsK4j9Hx99TS9Hd8_3txNL-7HOskkHZuSScOJNkqqiuusEkqkyuSJ0UwQnmheSqpTrkmmtS4Vq_ISaEUM1zlJeZ6M0MnKuwz-rYPYFraOGoaXgO9iwYjgkhHZu0bo-A_64rvg-u16KhcyzYQchKcrSgcfYwBTLENtVfgsKCmGJIohiWJIomeP1sautFD9kj9f3wOTFfBRN_D5v6l4upo9fCu_AFxSlF0</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Moreno‐Jiménez, Inés</creator><creator>Lanham, Stuart A.</creator><creator>Kanczler, Janos M.</creator><creator>Hulsart‐Billstrom, Gry</creator><creator>Evans, Nicholas D.</creator><creator>Oreffo, Richard O.C.</creator><general>Hindawi Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0717-3671</orcidid><orcidid>https://orcid.org/0000-0001-5995-6726</orcidid></search><sort><creationdate>201808</creationdate><title>Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption</title><author>Moreno‐Jiménez, Inés ; Lanham, Stuart A. ; Kanczler, Janos M. ; Hulsart‐Billstrom, Gry ; Evans, Nicholas D. ; Oreffo, Richard O.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3791-fb29f40cfa9ad4c7d5a56af83fc25043c4b91c64c07cccba2d8be1d0f4c806483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D registration, in vivo</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Avian cells</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>BMP2, preclinical model</topic><topic>Bone grafts</topic><topic>Bone growth</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone remodeling</topic><topic>Bone Resorption</topic><topic>Bone surgery</topic><topic>Cathepsin K</topic><topic>Cbfa-1 protein</topic><topic>Cell culture</topic><topic>Chick Embryo</topic><topic>Chorioallantoic membrane</topic><topic>chorioallantoic membrane (CAM assay)</topic><topic>Chorioallantoic Membrane - metabolism</topic><topic>Collagen</topic><topic>Computed tomography</topic><topic>Cylinders</topic><topic>Deposition</topic><topic>Dimensional analysis</topic><topic>Embryos</topic><topic>Extracellular matrix</topic><topic>Female</topic><topic>Femur</topic><topic>Fluorescence</topic><topic>Green fluorescent protein</topic><topic>Heterografts</topic><topic>human bone</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Implantation</topic><topic>In vivo methods and tests</topic><topic>Male</topic><topic>micro computed tomography (μCT)</topic><topic>Middle Aged</topic><topic>Mineralization</topic><topic>Organ culture</topic><topic>Osteogenesis</topic><topic>Osteoid</topic><topic>Poultry</topic><topic>Proteins</topic><topic>Regenerative medicine</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno‐Jiménez, Inés</creatorcontrib><creatorcontrib>Lanham, Stuart A.</creatorcontrib><creatorcontrib>Kanczler, Janos M.</creatorcontrib><creatorcontrib>Hulsart‐Billstrom, Gry</creatorcontrib><creatorcontrib>Evans, Nicholas D.</creatorcontrib><creatorcontrib>Oreffo, Richard O.C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of tissue engineering and regenerative medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno‐Jiménez, Inés</au><au>Lanham, Stuart A.</au><au>Kanczler, Janos M.</au><au>Hulsart‐Billstrom, Gry</au><au>Evans, Nicholas D.</au><au>Oreffo, Richard O.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption</atitle><jtitle>Journal of tissue engineering and regenerative medicine</jtitle><addtitle>J Tissue Eng Regen Med</addtitle><date>2018-08</date><risdate>2018</risdate><volume>12</volume><issue>8</issue><spage>1877</spage><epage>1890</epage><pages>1877-1890</pages><issn>1932-6254</issn><eissn>1932-7005</eissn><abstract>Traditionally used as an angiogenic assay, the chorioallantoic membrane (CAM) assay of the chick embryo offers significant potential as an in vivo model for xenograft organ culture. Viable human bone can be cultivated on the CAM and increases in bone volume are evident; however, it remains unclear by what mechanism this change occurs and whether this reflects the physiological process of bone remodelling. In this study we tested the hypothesis that CAM‐induced bone remodelling is a consequence of host and graft mediated processes. Bone cylinders harvested from femoral heads post surgery were placed on the CAM of green fluorescent protein (GFP)‐chick embryos for 9 days, followed by micro computed tomography (μCT) and histological analysis. Three‐dimensional registration of consecutive μCT‐scans showed newly mineralised tissue in CAM‐implanted bone cylinders, as well as new osteoid deposition histologically. Immunohistochemistry demonstrated the presence of bone resorption and formation markers (Cathepsin K, SOX9 and RUNX2) co‐localising with GFP staining, expressed by avian cells only. To investigate the role of the human cells in the process of bone formation, decellularised bone cylinders were implanted on the CAM and comparable increases in bone volume were observed, indicating that avian cells were responsible for the bone mineralisation process. Finally, CAM‐implantation of acellular collagen sponges, containing bone morphogenetic protein 2, resulted in the deposition of extracellular matrix and tissue mineralisation. These studies indicate that the CAM can respond to osteogenic stimuli and support formation or resorption of implanted human bone, providing a humanised CAM model for regenerative medicine research and a novel short‐term in vivo model for tissue engineering and biomaterial testing.</abstract><cop>England</cop><pub>Hindawi Limited</pub><pmid>29893478</pmid><doi>10.1002/term.2711</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0717-3671</orcidid><orcidid>https://orcid.org/0000-0001-5995-6726</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6254
ispartof Journal of tissue engineering and regenerative medicine, 2018-08, Vol.12 (8), p.1877-1890
issn 1932-6254
1932-7005
language eng
recordid cdi_proquest_miscellaneous_2054920904
source MEDLINE; Wiley Online Library All Journals
subjects 3D registration, in vivo
Aged
Aged, 80 and over
Angiogenesis
Animals
Avian cells
Biocompatibility
Biomaterials
Biomedical materials
BMP2, preclinical model
Bone grafts
Bone growth
Bone morphogenetic protein 2
Bone remodeling
Bone Resorption
Bone surgery
Cathepsin K
Cbfa-1 protein
Cell culture
Chick Embryo
Chorioallantoic membrane
chorioallantoic membrane (CAM assay)
Chorioallantoic Membrane - metabolism
Collagen
Computed tomography
Cylinders
Deposition
Dimensional analysis
Embryos
Extracellular matrix
Female
Femur
Fluorescence
Green fluorescent protein
Heterografts
human bone
Humans
Immunohistochemistry
Implantation
In vivo methods and tests
Male
micro computed tomography (μCT)
Middle Aged
Mineralization
Organ culture
Osteogenesis
Osteoid
Poultry
Proteins
Regenerative medicine
Surgical implants
Tissue engineering
Xenografts
Xenotransplantation
title Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remodelling%20of%20human%20bone%20on%20the%20chorioallantoic%20membrane%20of%20the%20chicken%20egg:%20De%20novo%20bone%20formation%20and%20resorption&rft.jtitle=Journal%20of%20tissue%20engineering%20and%20regenerative%20medicine&rft.au=Moreno%E2%80%90Jim%C3%A9nez,%20In%C3%A9s&rft.date=2018-08&rft.volume=12&rft.issue=8&rft.spage=1877&rft.epage=1890&rft.pages=1877-1890&rft.issn=1932-6254&rft.eissn=1932-7005&rft_id=info:doi/10.1002/term.2711&rft_dat=%3Cproquest_cross%3E2085967598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085967598&rft_id=info:pmid/29893478&rfr_iscdi=true