Decoloration of waste PET alcoholysis liquid by an electrochemical method
Disperse Red 60 simulated polyester alcoholysis liquid decoloration by electro-Fenton with Fe O catalyst was studied. The influences of the main operating parameters such as catalyst dosage (0.3-0.9 g/L), current density (60-120 mA/cm ) and pH (1-7) were optimized by response surface methodology (RSM...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2018-05, Vol.77 (9-10), p.2463-2473 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2473 |
---|---|
container_issue | 9-10 |
container_start_page | 2463 |
container_title | Water science and technology |
container_volume | 77 |
creator | Li, Yanyan Li, Mengjuan Lu, Jing Li, Xiaoqiang Ge, Mingqiao |
description | Disperse Red 60 simulated polyester alcoholysis liquid decoloration by electro-Fenton with Fe
O
catalyst was studied. The influences of the main operating parameters such as catalyst dosage (0.3-0.9 g/L), current density (60-120 mA/cm
) and pH (1-7) were optimized by response surface methodology (RSM) based on Box-Behnken surface statistical design (BBD). In optimal conditions, the initial concentration of 25 mg/L disperse red polyester alcoholysis liquid was catalyzed by 0.6 g/L Fe
O
, and the decoloration efficiency was 97.18% with the current density of 90 mA/cm
and initial pH of 4.6. There was a relative error of 1.18% with the predicted model when the predictive value was 98.25% under the same conditions. In addition, ultraviolet-visible absorption spectra (UV-Vis), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to study the degradation mechanism during decoloration. The intermediates were identified and the proposed degradation pathways were investigated by liquid chromatography-mass spectrometry (LC-MS) analysis. |
doi_str_mv | 10.2166/wst.2018.191 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2054918910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063531818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-862541e139d8185f298afe9e34ce3d74a9135685fe1e21e19c258acf3b440d983</originalsourceid><addsrcrecordid>eNpd0L1LAzEYx_Egiq0vm7MEXBy8mie5l2SUWrVQ0KHOIc09R6_kmvZyR-l_b0qrg1OGfHj48SXkDtiIQ54_70I34gzkCBSckSEolSeqEPycDBkvRAKciwG5CmHFGCtEyi7JgCupRCGyIZm-ovXOt6ar_Zr6iu5M6JB-TebUOOuX3u1DHairt31d0sWemjVFh7ZrvV1iU1vjaIPd0pc35KIyLuDt6b0m32-T-fgjmX2-T8cvs8QKUF0ic56lgCBUKUFmVZxiKlQoUouiLFKjQGR5_EBAHp2yPJPGVmKRpqxUUlyTx-PdTeu3PYZON3Ww6JxZo--D5ixLFUgFLNKHf3Tl-3Yd10WVi0xAnBDV01HZ1ofQYqU3bd2Ydq-B6UNiHRPrQ2IdE0d-fzraLxos__BvU_EDY0V1xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063531818</pqid></control><display><type>article</type><title>Decoloration of waste PET alcoholysis liquid by an electrochemical method</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Yanyan ; Li, Mengjuan ; Lu, Jing ; Li, Xiaoqiang ; Ge, Mingqiao</creator><creatorcontrib>Li, Yanyan ; Li, Mengjuan ; Lu, Jing ; Li, Xiaoqiang ; Ge, Mingqiao</creatorcontrib><description>Disperse Red 60 simulated polyester alcoholysis liquid decoloration by electro-Fenton with Fe
O
catalyst was studied. The influences of the main operating parameters such as catalyst dosage (0.3-0.9 g/L), current density (60-120 mA/cm
) and pH (1-7) were optimized by response surface methodology (RSM) based on Box-Behnken surface statistical design (BBD). In optimal conditions, the initial concentration of 25 mg/L disperse red polyester alcoholysis liquid was catalyzed by 0.6 g/L Fe
O
, and the decoloration efficiency was 97.18% with the current density of 90 mA/cm
and initial pH of 4.6. There was a relative error of 1.18% with the predicted model when the predictive value was 98.25% under the same conditions. In addition, ultraviolet-visible absorption spectra (UV-Vis), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to study the degradation mechanism during decoloration. The intermediates were identified and the proposed degradation pathways were investigated by liquid chromatography-mass spectrometry (LC-MS) analysis.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2018.191</identifier><identifier>PMID: 29893735</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Absorption spectra ; Alcohol ; Alcoholysis ; Analytical methods ; Catalysis ; Catalysts ; Chemical oxygen demand ; Chemistry ; Chromatography ; Color ; Color removal ; Computer simulation ; Current density ; Decoloring ; Degradation ; Dispersion ; Dyes ; Electrochemistry ; Fourier transforms ; Infrared analysis ; Infrared spectra ; Infrared spectroscopy ; Intermediates ; Iron oxides ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Oxidation ; pH effects ; Response surface methodology ; Thermogravimetric analysis ; Ultraviolet radiation ; Ultraviolet spectra ; Water treatment</subject><ispartof>Water science and technology, 2018-05, Vol.77 (9-10), p.2463-2473</ispartof><rights>Copyright IWA Publishing May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-862541e139d8185f298afe9e34ce3d74a9135685fe1e21e19c258acf3b440d983</citedby><cites>FETCH-LOGICAL-c319t-862541e139d8185f298afe9e34ce3d74a9135685fe1e21e19c258acf3b440d983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29893735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yanyan</creatorcontrib><creatorcontrib>Li, Mengjuan</creatorcontrib><creatorcontrib>Lu, Jing</creatorcontrib><creatorcontrib>Li, Xiaoqiang</creatorcontrib><creatorcontrib>Ge, Mingqiao</creatorcontrib><title>Decoloration of waste PET alcoholysis liquid by an electrochemical method</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>Disperse Red 60 simulated polyester alcoholysis liquid decoloration by electro-Fenton with Fe
O
catalyst was studied. The influences of the main operating parameters such as catalyst dosage (0.3-0.9 g/L), current density (60-120 mA/cm
) and pH (1-7) were optimized by response surface methodology (RSM) based on Box-Behnken surface statistical design (BBD). In optimal conditions, the initial concentration of 25 mg/L disperse red polyester alcoholysis liquid was catalyzed by 0.6 g/L Fe
O
, and the decoloration efficiency was 97.18% with the current density of 90 mA/cm
and initial pH of 4.6. There was a relative error of 1.18% with the predicted model when the predictive value was 98.25% under the same conditions. In addition, ultraviolet-visible absorption spectra (UV-Vis), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to study the degradation mechanism during decoloration. The intermediates were identified and the proposed degradation pathways were investigated by liquid chromatography-mass spectrometry (LC-MS) analysis.</description><subject>Absorption spectra</subject><subject>Alcohol</subject><subject>Alcoholysis</subject><subject>Analytical methods</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical oxygen demand</subject><subject>Chemistry</subject><subject>Chromatography</subject><subject>Color</subject><subject>Color removal</subject><subject>Computer simulation</subject><subject>Current density</subject><subject>Decoloring</subject><subject>Degradation</subject><subject>Dispersion</subject><subject>Dyes</subject><subject>Electrochemistry</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Intermediates</subject><subject>Iron oxides</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Oxidation</subject><subject>pH effects</subject><subject>Response surface methodology</subject><subject>Thermogravimetric analysis</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet spectra</subject><subject>Water treatment</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpd0L1LAzEYx_Egiq0vm7MEXBy8mie5l2SUWrVQ0KHOIc09R6_kmvZyR-l_b0qrg1OGfHj48SXkDtiIQ54_70I34gzkCBSckSEolSeqEPycDBkvRAKciwG5CmHFGCtEyi7JgCupRCGyIZm-ovXOt6ar_Zr6iu5M6JB-TebUOOuX3u1DHairt31d0sWemjVFh7ZrvV1iU1vjaIPd0pc35KIyLuDt6b0m32-T-fgjmX2-T8cvs8QKUF0ic56lgCBUKUFmVZxiKlQoUouiLFKjQGR5_EBAHp2yPJPGVmKRpqxUUlyTx-PdTeu3PYZON3Ww6JxZo--D5ixLFUgFLNKHf3Tl-3Yd10WVi0xAnBDV01HZ1ofQYqU3bd2Ydq-B6UNiHRPrQ2IdE0d-fzraLxos__BvU_EDY0V1xw</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Li, Yanyan</creator><creator>Li, Mengjuan</creator><creator>Lu, Jing</creator><creator>Li, Xiaoqiang</creator><creator>Ge, Mingqiao</creator><general>IWA Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20180501</creationdate><title>Decoloration of waste PET alcoholysis liquid by an electrochemical method</title><author>Li, Yanyan ; Li, Mengjuan ; Lu, Jing ; Li, Xiaoqiang ; Ge, Mingqiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-862541e139d8185f298afe9e34ce3d74a9135685fe1e21e19c258acf3b440d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption spectra</topic><topic>Alcohol</topic><topic>Alcoholysis</topic><topic>Analytical methods</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical oxygen demand</topic><topic>Chemistry</topic><topic>Chromatography</topic><topic>Color</topic><topic>Color removal</topic><topic>Computer simulation</topic><topic>Current density</topic><topic>Decoloring</topic><topic>Degradation</topic><topic>Dispersion</topic><topic>Dyes</topic><topic>Electrochemistry</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Intermediates</topic><topic>Iron oxides</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Oxidation</topic><topic>pH effects</topic><topic>Response surface methodology</topic><topic>Thermogravimetric analysis</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet spectra</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanyan</creatorcontrib><creatorcontrib>Li, Mengjuan</creatorcontrib><creatorcontrib>Lu, Jing</creatorcontrib><creatorcontrib>Li, Xiaoqiang</creatorcontrib><creatorcontrib>Ge, Mingqiao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanyan</au><au>Li, Mengjuan</au><au>Lu, Jing</au><au>Li, Xiaoqiang</au><au>Ge, Mingqiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoloration of waste PET alcoholysis liquid by an electrochemical method</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>77</volume><issue>9-10</issue><spage>2463</spage><epage>2473</epage><pages>2463-2473</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>Disperse Red 60 simulated polyester alcoholysis liquid decoloration by electro-Fenton with Fe
O
catalyst was studied. The influences of the main operating parameters such as catalyst dosage (0.3-0.9 g/L), current density (60-120 mA/cm
) and pH (1-7) were optimized by response surface methodology (RSM) based on Box-Behnken surface statistical design (BBD). In optimal conditions, the initial concentration of 25 mg/L disperse red polyester alcoholysis liquid was catalyzed by 0.6 g/L Fe
O
, and the decoloration efficiency was 97.18% with the current density of 90 mA/cm
and initial pH of 4.6. There was a relative error of 1.18% with the predicted model when the predictive value was 98.25% under the same conditions. In addition, ultraviolet-visible absorption spectra (UV-Vis), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to study the degradation mechanism during decoloration. The intermediates were identified and the proposed degradation pathways were investigated by liquid chromatography-mass spectrometry (LC-MS) analysis.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>29893735</pmid><doi>10.2166/wst.2018.191</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2018-05, Vol.77 (9-10), p.2463-2473 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_2054918910 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Absorption spectra Alcohol Alcoholysis Analytical methods Catalysis Catalysts Chemical oxygen demand Chemistry Chromatography Color Color removal Computer simulation Current density Decoloring Degradation Dispersion Dyes Electrochemistry Fourier transforms Infrared analysis Infrared spectra Infrared spectroscopy Intermediates Iron oxides Liquid chromatography Mass spectrometry Mass spectroscopy Oxidation pH effects Response surface methodology Thermogravimetric analysis Ultraviolet radiation Ultraviolet spectra Water treatment |
title | Decoloration of waste PET alcoholysis liquid by an electrochemical method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoloration%20of%20waste%20PET%20alcoholysis%20liquid%20by%20an%20electrochemical%20method&rft.jtitle=Water%20science%20and%20technology&rft.au=Li,%20Yanyan&rft.date=2018-05-01&rft.volume=77&rft.issue=9-10&rft.spage=2463&rft.epage=2473&rft.pages=2463-2473&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2018.191&rft_dat=%3Cproquest_cross%3E2063531818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063531818&rft_id=info:pmid/29893735&rfr_iscdi=true |