Thermal stress and morphological adaptations in limpets
1. On thermally stressful rocky shores, small, slow-moving ectotherms such as limpets exhibit morphological characteristics such as high-spired and heavily ridged shells which may reduce the likelihood of reaching stressful or lethal body temperatures. 2. The effects of shell height and shell surfac...
Gespeichert in:
Veröffentlicht in: | Functional ecology 2009-04, Vol.23 (2), p.292-301 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 301 |
---|---|
container_issue | 2 |
container_start_page | 292 |
container_title | Functional ecology |
container_volume | 23 |
creator | Harley, Christopher D. G. Denny, Mark W. Mach, Katharine J. Miller, Luke P. |
description | 1. On thermally stressful rocky shores, small, slow-moving ectotherms such as limpets exhibit morphological characteristics such as high-spired and heavily ridged shells which may reduce the likelihood of reaching stressful or lethal body temperatures. 2. The effects of shell height and shell surface area on predicted limpet body temperatures were tested with a previously developed heat budget model. The model was parameterized with morphological data from three species (Lottia gigantea, Patella vulgata and Siphonaria gigas), which differ dramatically in their morphology and in the body temperatures they are likely to reach in the field. 3. Limpet models and standard cones with higher height : length ratios lost heat to convection more readily than models with lower spired shells. 4. Heavily ridged shells lost heat to convection more readily than smoother shells, but this effect was only pronounced at high wind velocities. 5. When the heat budget model parameters were applied to a real environmental data set, the model predicts that maximum body temperatures and cumulative thermal stress vary among species. These differences are related primarily to the height : length ratio of the shell, and to a lesser extent to the presence of ridges. 6. These results suggest that some intra- and interspecific variation in limpet morphology may be phenotypic or evolutionary responses to variation in environmental temperatures. Our findings are supported by observed patterns of limpet morphological variation across natural thermal gradients. |
doi_str_mv | 10.1111/j.1365-2435.2008.01496.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20546840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40205532</jstor_id><sourcerecordid>40205532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4206-388e105e273bd425757fb313842206546c18b65aa3b3c6254128e760df7607153</originalsourceid><addsrcrecordid>eNqNUDtPwzAQthBIlMJPQGSBLeH8jDswoKoFpEoMtLPlpE6bKomDnYr23-OQqjM3-Cx9j7v7EIowJDjU8y7BVPCYMMoTAiATwGwiksMFGp2BSzQCIiaxZIJeoxvvdwAw4YSMULrcGlfrKvKdM95HullHtXXt1lZ2U-YB0GvddrorbeOjsomqsm5N52_RVaErb-5OfYxW89ly-h4vPt8-pq-LOGcEREylNBi4ISnN1ozwlKdFRjGVjASYM5FjmQmuNc1oLghnmEiTClgX4Ukxp2P0NPi2zn7vje9UXfrcVJVujN17RSCYSAaBKAdi7qz3zhSqdWWt3VFhUH1Saqf6QFQfiOqTUn9JqUOQPp5maB8uLpxu8tKf9STsxGhKA-9l4P2UlTn-21_NZ9P-F_T3g37nO-vOegbhCE5JwB8GvNBW6Y0LO6y-CGAKWAATE0x_AQwxjFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20546840</pqid></control><display><type>article</type><title>Thermal stress and morphological adaptations in limpets</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Harley, Christopher D. G. ; Denny, Mark W. ; Mach, Katharine J. ; Miller, Luke P.</creator><creatorcontrib>Harley, Christopher D. G. ; Denny, Mark W. ; Mach, Katharine J. ; Miller, Luke P.</creatorcontrib><description>1. On thermally stressful rocky shores, small, slow-moving ectotherms such as limpets exhibit morphological characteristics such as high-spired and heavily ridged shells which may reduce the likelihood of reaching stressful or lethal body temperatures. 2. The effects of shell height and shell surface area on predicted limpet body temperatures were tested with a previously developed heat budget model. The model was parameterized with morphological data from three species (Lottia gigantea, Patella vulgata and Siphonaria gigas), which differ dramatically in their morphology and in the body temperatures they are likely to reach in the field. 3. Limpet models and standard cones with higher height : length ratios lost heat to convection more readily than models with lower spired shells. 4. Heavily ridged shells lost heat to convection more readily than smoother shells, but this effect was only pronounced at high wind velocities. 5. When the heat budget model parameters were applied to a real environmental data set, the model predicts that maximum body temperatures and cumulative thermal stress vary among species. These differences are related primarily to the height : length ratio of the shell, and to a lesser extent to the presence of ridges. 6. These results suggest that some intra- and interspecific variation in limpet morphology may be phenotypic or evolutionary responses to variation in environmental temperatures. Our findings are supported by observed patterns of limpet morphological variation across natural thermal gradients.</description><identifier>ISSN: 0269-8463</identifier><identifier>EISSN: 1365-2435</identifier><identifier>DOI: 10.1111/j.1365-2435.2008.01496.x</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal mimicry ; Animal morphology ; Animal Morphology and Coloration ; Animal, plant and microbial ecology ; Autoecology ; Biological and medical sciences ; Body temperature ; Coastal ecology ; Fundamental and applied biological sciences. Psychology ; General aspects ; heat budget model ; Human ecology ; Invertebrates ; Lottia gigantea ; Marine ; Marine ecology ; Mollusca ; morphological adaptation ; Patella ; Patella vulgata ; rocky intertidal zone ; shell morphology ; Siphonaria ; Siphonaria gigas ; Surface areas ; Thermal stress ; Wind velocity</subject><ispartof>Functional ecology, 2009-04, Vol.23 (2), p.292-301</ispartof><rights>Copyright 2009 British Ecological Society</rights><rights>2008 The Authors. Journal compilation © 2008 British Ecological Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4206-388e105e273bd425757fb313842206546c18b65aa3b3c6254128e760df7607153</citedby><cites>FETCH-LOGICAL-c4206-388e105e273bd425757fb313842206546c18b65aa3b3c6254128e760df7607153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40205532$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40205532$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21284373$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Harley, Christopher D. G.</creatorcontrib><creatorcontrib>Denny, Mark W.</creatorcontrib><creatorcontrib>Mach, Katharine J.</creatorcontrib><creatorcontrib>Miller, Luke P.</creatorcontrib><title>Thermal stress and morphological adaptations in limpets</title><title>Functional ecology</title><description>1. On thermally stressful rocky shores, small, slow-moving ectotherms such as limpets exhibit morphological characteristics such as high-spired and heavily ridged shells which may reduce the likelihood of reaching stressful or lethal body temperatures. 2. The effects of shell height and shell surface area on predicted limpet body temperatures were tested with a previously developed heat budget model. The model was parameterized with morphological data from three species (Lottia gigantea, Patella vulgata and Siphonaria gigas), which differ dramatically in their morphology and in the body temperatures they are likely to reach in the field. 3. Limpet models and standard cones with higher height : length ratios lost heat to convection more readily than models with lower spired shells. 4. Heavily ridged shells lost heat to convection more readily than smoother shells, but this effect was only pronounced at high wind velocities. 5. When the heat budget model parameters were applied to a real environmental data set, the model predicts that maximum body temperatures and cumulative thermal stress vary among species. These differences are related primarily to the height : length ratio of the shell, and to a lesser extent to the presence of ridges. 6. These results suggest that some intra- and interspecific variation in limpet morphology may be phenotypic or evolutionary responses to variation in environmental temperatures. Our findings are supported by observed patterns of limpet morphological variation across natural thermal gradients.</description><subject>Animal and plant ecology</subject><subject>Animal mimicry</subject><subject>Animal morphology</subject><subject>Animal Morphology and Coloration</subject><subject>Animal, plant and microbial ecology</subject><subject>Autoecology</subject><subject>Biological and medical sciences</subject><subject>Body temperature</subject><subject>Coastal ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>heat budget model</subject><subject>Human ecology</subject><subject>Invertebrates</subject><subject>Lottia gigantea</subject><subject>Marine</subject><subject>Marine ecology</subject><subject>Mollusca</subject><subject>morphological adaptation</subject><subject>Patella</subject><subject>Patella vulgata</subject><subject>rocky intertidal zone</subject><subject>shell morphology</subject><subject>Siphonaria</subject><subject>Siphonaria gigas</subject><subject>Surface areas</subject><subject>Thermal stress</subject><subject>Wind velocity</subject><issn>0269-8463</issn><issn>1365-2435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNUDtPwzAQthBIlMJPQGSBLeH8jDswoKoFpEoMtLPlpE6bKomDnYr23-OQqjM3-Cx9j7v7EIowJDjU8y7BVPCYMMoTAiATwGwiksMFGp2BSzQCIiaxZIJeoxvvdwAw4YSMULrcGlfrKvKdM95HullHtXXt1lZ2U-YB0GvddrorbeOjsomqsm5N52_RVaErb-5OfYxW89ly-h4vPt8-pq-LOGcEREylNBi4ISnN1ozwlKdFRjGVjASYM5FjmQmuNc1oLghnmEiTClgX4Ukxp2P0NPi2zn7vje9UXfrcVJVujN17RSCYSAaBKAdi7qz3zhSqdWWt3VFhUH1Saqf6QFQfiOqTUn9JqUOQPp5maB8uLpxu8tKf9STsxGhKA-9l4P2UlTn-21_NZ9P-F_T3g37nO-vOegbhCE5JwB8GvNBW6Y0LO6y-CGAKWAATE0x_AQwxjFM</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Harley, Christopher D. G.</creator><creator>Denny, Mark W.</creator><creator>Mach, Katharine J.</creator><creator>Miller, Luke P.</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>200904</creationdate><title>Thermal stress and morphological adaptations in limpets</title><author>Harley, Christopher D. G. ; Denny, Mark W. ; Mach, Katharine J. ; Miller, Luke P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4206-388e105e273bd425757fb313842206546c18b65aa3b3c6254128e760df7607153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animal and plant ecology</topic><topic>Animal mimicry</topic><topic>Animal morphology</topic><topic>Animal Morphology and Coloration</topic><topic>Animal, plant and microbial ecology</topic><topic>Autoecology</topic><topic>Biological and medical sciences</topic><topic>Body temperature</topic><topic>Coastal ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>heat budget model</topic><topic>Human ecology</topic><topic>Invertebrates</topic><topic>Lottia gigantea</topic><topic>Marine</topic><topic>Marine ecology</topic><topic>Mollusca</topic><topic>morphological adaptation</topic><topic>Patella</topic><topic>Patella vulgata</topic><topic>rocky intertidal zone</topic><topic>shell morphology</topic><topic>Siphonaria</topic><topic>Siphonaria gigas</topic><topic>Surface areas</topic><topic>Thermal stress</topic><topic>Wind velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harley, Christopher D. G.</creatorcontrib><creatorcontrib>Denny, Mark W.</creatorcontrib><creatorcontrib>Mach, Katharine J.</creatorcontrib><creatorcontrib>Miller, Luke P.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Functional ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harley, Christopher D. G.</au><au>Denny, Mark W.</au><au>Mach, Katharine J.</au><au>Miller, Luke P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stress and morphological adaptations in limpets</atitle><jtitle>Functional ecology</jtitle><date>2009-04</date><risdate>2009</risdate><volume>23</volume><issue>2</issue><spage>292</spage><epage>301</epage><pages>292-301</pages><issn>0269-8463</issn><eissn>1365-2435</eissn><abstract>1. On thermally stressful rocky shores, small, slow-moving ectotherms such as limpets exhibit morphological characteristics such as high-spired and heavily ridged shells which may reduce the likelihood of reaching stressful or lethal body temperatures. 2. The effects of shell height and shell surface area on predicted limpet body temperatures were tested with a previously developed heat budget model. The model was parameterized with morphological data from three species (Lottia gigantea, Patella vulgata and Siphonaria gigas), which differ dramatically in their morphology and in the body temperatures they are likely to reach in the field. 3. Limpet models and standard cones with higher height : length ratios lost heat to convection more readily than models with lower spired shells. 4. Heavily ridged shells lost heat to convection more readily than smoother shells, but this effect was only pronounced at high wind velocities. 5. When the heat budget model parameters were applied to a real environmental data set, the model predicts that maximum body temperatures and cumulative thermal stress vary among species. These differences are related primarily to the height : length ratio of the shell, and to a lesser extent to the presence of ridges. 6. These results suggest that some intra- and interspecific variation in limpet morphology may be phenotypic or evolutionary responses to variation in environmental temperatures. Our findings are supported by observed patterns of limpet morphological variation across natural thermal gradients.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2435.2008.01496.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-8463 |
ispartof | Functional ecology, 2009-04, Vol.23 (2), p.292-301 |
issn | 0269-8463 1365-2435 |
language | eng |
recordid | cdi_proquest_miscellaneous_20546840 |
source | Jstor Complete Legacy; Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animal and plant ecology Animal mimicry Animal morphology Animal Morphology and Coloration Animal, plant and microbial ecology Autoecology Biological and medical sciences Body temperature Coastal ecology Fundamental and applied biological sciences. Psychology General aspects heat budget model Human ecology Invertebrates Lottia gigantea Marine Marine ecology Mollusca morphological adaptation Patella Patella vulgata rocky intertidal zone shell morphology Siphonaria Siphonaria gigas Surface areas Thermal stress Wind velocity |
title | Thermal stress and morphological adaptations in limpets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stress%20and%20morphological%20adaptations%20in%20limpets&rft.jtitle=Functional%20ecology&rft.au=Harley,%20Christopher%20D.%20G.&rft.date=2009-04&rft.volume=23&rft.issue=2&rft.spage=292&rft.epage=301&rft.pages=292-301&rft.issn=0269-8463&rft.eissn=1365-2435&rft_id=info:doi/10.1111/j.1365-2435.2008.01496.x&rft_dat=%3Cjstor_proqu%3E40205532%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20546840&rft_id=info:pmid/&rft_jstor_id=40205532&rfr_iscdi=true |