Thermal stress and morphological adaptations in limpets

1. On thermally stressful rocky shores, small, slow-moving ectotherms such as limpets exhibit morphological characteristics such as high-spired and heavily ridged shells which may reduce the likelihood of reaching stressful or lethal body temperatures. 2. The effects of shell height and shell surfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional ecology 2009-04, Vol.23 (2), p.292-301
Hauptverfasser: Harley, Christopher D. G., Denny, Mark W., Mach, Katharine J., Miller, Luke P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue 2
container_start_page 292
container_title Functional ecology
container_volume 23
creator Harley, Christopher D. G.
Denny, Mark W.
Mach, Katharine J.
Miller, Luke P.
description 1. On thermally stressful rocky shores, small, slow-moving ectotherms such as limpets exhibit morphological characteristics such as high-spired and heavily ridged shells which may reduce the likelihood of reaching stressful or lethal body temperatures. 2. The effects of shell height and shell surface area on predicted limpet body temperatures were tested with a previously developed heat budget model. The model was parameterized with morphological data from three species (Lottia gigantea, Patella vulgata and Siphonaria gigas), which differ dramatically in their morphology and in the body temperatures they are likely to reach in the field. 3. Limpet models and standard cones with higher height : length ratios lost heat to convection more readily than models with lower spired shells. 4. Heavily ridged shells lost heat to convection more readily than smoother shells, but this effect was only pronounced at high wind velocities. 5. When the heat budget model parameters were applied to a real environmental data set, the model predicts that maximum body temperatures and cumulative thermal stress vary among species. These differences are related primarily to the height : length ratio of the shell, and to a lesser extent to the presence of ridges. 6. These results suggest that some intra- and interspecific variation in limpet morphology may be phenotypic or evolutionary responses to variation in environmental temperatures. Our findings are supported by observed patterns of limpet morphological variation across natural thermal gradients.
doi_str_mv 10.1111/j.1365-2435.2008.01496.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20546840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40205532</jstor_id><sourcerecordid>40205532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4206-388e105e273bd425757fb313842206546c18b65aa3b3c6254128e760df7607153</originalsourceid><addsrcrecordid>eNqNUDtPwzAQthBIlMJPQGSBLeH8jDswoKoFpEoMtLPlpE6bKomDnYr23-OQqjM3-Cx9j7v7EIowJDjU8y7BVPCYMMoTAiATwGwiksMFGp2BSzQCIiaxZIJeoxvvdwAw4YSMULrcGlfrKvKdM95HullHtXXt1lZ2U-YB0GvddrorbeOjsomqsm5N52_RVaErb-5OfYxW89ly-h4vPt8-pq-LOGcEREylNBi4ISnN1ozwlKdFRjGVjASYM5FjmQmuNc1oLghnmEiTClgX4Ukxp2P0NPi2zn7vje9UXfrcVJVujN17RSCYSAaBKAdi7qz3zhSqdWWt3VFhUH1Saqf6QFQfiOqTUn9JqUOQPp5maB8uLpxu8tKf9STsxGhKA-9l4P2UlTn-21_NZ9P-F_T3g37nO-vOegbhCE5JwB8GvNBW6Y0LO6y-CGAKWAATE0x_AQwxjFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20546840</pqid></control><display><type>article</type><title>Thermal stress and morphological adaptations in limpets</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Harley, Christopher D. G. ; Denny, Mark W. ; Mach, Katharine J. ; Miller, Luke P.</creator><creatorcontrib>Harley, Christopher D. G. ; Denny, Mark W. ; Mach, Katharine J. ; Miller, Luke P.</creatorcontrib><description>1. On thermally stressful rocky shores, small, slow-moving ectotherms such as limpets exhibit morphological characteristics such as high-spired and heavily ridged shells which may reduce the likelihood of reaching stressful or lethal body temperatures. 2. The effects of shell height and shell surface area on predicted limpet body temperatures were tested with a previously developed heat budget model. The model was parameterized with morphological data from three species (Lottia gigantea, Patella vulgata and Siphonaria gigas), which differ dramatically in their morphology and in the body temperatures they are likely to reach in the field. 3. Limpet models and standard cones with higher height : length ratios lost heat to convection more readily than models with lower spired shells. 4. Heavily ridged shells lost heat to convection more readily than smoother shells, but this effect was only pronounced at high wind velocities. 5. When the heat budget model parameters were applied to a real environmental data set, the model predicts that maximum body temperatures and cumulative thermal stress vary among species. These differences are related primarily to the height : length ratio of the shell, and to a lesser extent to the presence of ridges. 6. These results suggest that some intra- and interspecific variation in limpet morphology may be phenotypic or evolutionary responses to variation in environmental temperatures. Our findings are supported by observed patterns of limpet morphological variation across natural thermal gradients.</description><identifier>ISSN: 0269-8463</identifier><identifier>EISSN: 1365-2435</identifier><identifier>DOI: 10.1111/j.1365-2435.2008.01496.x</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal mimicry ; Animal morphology ; Animal Morphology and Coloration ; Animal, plant and microbial ecology ; Autoecology ; Biological and medical sciences ; Body temperature ; Coastal ecology ; Fundamental and applied biological sciences. Psychology ; General aspects ; heat budget model ; Human ecology ; Invertebrates ; Lottia gigantea ; Marine ; Marine ecology ; Mollusca ; morphological adaptation ; Patella ; Patella vulgata ; rocky intertidal zone ; shell morphology ; Siphonaria ; Siphonaria gigas ; Surface areas ; Thermal stress ; Wind velocity</subject><ispartof>Functional ecology, 2009-04, Vol.23 (2), p.292-301</ispartof><rights>Copyright 2009 British Ecological Society</rights><rights>2008 The Authors. Journal compilation © 2008 British Ecological Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4206-388e105e273bd425757fb313842206546c18b65aa3b3c6254128e760df7607153</citedby><cites>FETCH-LOGICAL-c4206-388e105e273bd425757fb313842206546c18b65aa3b3c6254128e760df7607153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40205532$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40205532$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21284373$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Harley, Christopher D. G.</creatorcontrib><creatorcontrib>Denny, Mark W.</creatorcontrib><creatorcontrib>Mach, Katharine J.</creatorcontrib><creatorcontrib>Miller, Luke P.</creatorcontrib><title>Thermal stress and morphological adaptations in limpets</title><title>Functional ecology</title><description>1. On thermally stressful rocky shores, small, slow-moving ectotherms such as limpets exhibit morphological characteristics such as high-spired and heavily ridged shells which may reduce the likelihood of reaching stressful or lethal body temperatures. 2. The effects of shell height and shell surface area on predicted limpet body temperatures were tested with a previously developed heat budget model. The model was parameterized with morphological data from three species (Lottia gigantea, Patella vulgata and Siphonaria gigas), which differ dramatically in their morphology and in the body temperatures they are likely to reach in the field. 3. Limpet models and standard cones with higher height : length ratios lost heat to convection more readily than models with lower spired shells. 4. Heavily ridged shells lost heat to convection more readily than smoother shells, but this effect was only pronounced at high wind velocities. 5. When the heat budget model parameters were applied to a real environmental data set, the model predicts that maximum body temperatures and cumulative thermal stress vary among species. These differences are related primarily to the height : length ratio of the shell, and to a lesser extent to the presence of ridges. 6. These results suggest that some intra- and interspecific variation in limpet morphology may be phenotypic or evolutionary responses to variation in environmental temperatures. Our findings are supported by observed patterns of limpet morphological variation across natural thermal gradients.</description><subject>Animal and plant ecology</subject><subject>Animal mimicry</subject><subject>Animal morphology</subject><subject>Animal Morphology and Coloration</subject><subject>Animal, plant and microbial ecology</subject><subject>Autoecology</subject><subject>Biological and medical sciences</subject><subject>Body temperature</subject><subject>Coastal ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>heat budget model</subject><subject>Human ecology</subject><subject>Invertebrates</subject><subject>Lottia gigantea</subject><subject>Marine</subject><subject>Marine ecology</subject><subject>Mollusca</subject><subject>morphological adaptation</subject><subject>Patella</subject><subject>Patella vulgata</subject><subject>rocky intertidal zone</subject><subject>shell morphology</subject><subject>Siphonaria</subject><subject>Siphonaria gigas</subject><subject>Surface areas</subject><subject>Thermal stress</subject><subject>Wind velocity</subject><issn>0269-8463</issn><issn>1365-2435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNUDtPwzAQthBIlMJPQGSBLeH8jDswoKoFpEoMtLPlpE6bKomDnYr23-OQqjM3-Cx9j7v7EIowJDjU8y7BVPCYMMoTAiATwGwiksMFGp2BSzQCIiaxZIJeoxvvdwAw4YSMULrcGlfrKvKdM95HullHtXXt1lZ2U-YB0GvddrorbeOjsomqsm5N52_RVaErb-5OfYxW89ly-h4vPt8-pq-LOGcEREylNBi4ISnN1ozwlKdFRjGVjASYM5FjmQmuNc1oLghnmEiTClgX4Ukxp2P0NPi2zn7vje9UXfrcVJVujN17RSCYSAaBKAdi7qz3zhSqdWWt3VFhUH1Saqf6QFQfiOqTUn9JqUOQPp5maB8uLpxu8tKf9STsxGhKA-9l4P2UlTn-21_NZ9P-F_T3g37nO-vOegbhCE5JwB8GvNBW6Y0LO6y-CGAKWAATE0x_AQwxjFM</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Harley, Christopher D. G.</creator><creator>Denny, Mark W.</creator><creator>Mach, Katharine J.</creator><creator>Miller, Luke P.</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>200904</creationdate><title>Thermal stress and morphological adaptations in limpets</title><author>Harley, Christopher D. G. ; Denny, Mark W. ; Mach, Katharine J. ; Miller, Luke P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4206-388e105e273bd425757fb313842206546c18b65aa3b3c6254128e760df7607153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animal and plant ecology</topic><topic>Animal mimicry</topic><topic>Animal morphology</topic><topic>Animal Morphology and Coloration</topic><topic>Animal, plant and microbial ecology</topic><topic>Autoecology</topic><topic>Biological and medical sciences</topic><topic>Body temperature</topic><topic>Coastal ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>heat budget model</topic><topic>Human ecology</topic><topic>Invertebrates</topic><topic>Lottia gigantea</topic><topic>Marine</topic><topic>Marine ecology</topic><topic>Mollusca</topic><topic>morphological adaptation</topic><topic>Patella</topic><topic>Patella vulgata</topic><topic>rocky intertidal zone</topic><topic>shell morphology</topic><topic>Siphonaria</topic><topic>Siphonaria gigas</topic><topic>Surface areas</topic><topic>Thermal stress</topic><topic>Wind velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harley, Christopher D. G.</creatorcontrib><creatorcontrib>Denny, Mark W.</creatorcontrib><creatorcontrib>Mach, Katharine J.</creatorcontrib><creatorcontrib>Miller, Luke P.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Functional ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harley, Christopher D. G.</au><au>Denny, Mark W.</au><au>Mach, Katharine J.</au><au>Miller, Luke P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stress and morphological adaptations in limpets</atitle><jtitle>Functional ecology</jtitle><date>2009-04</date><risdate>2009</risdate><volume>23</volume><issue>2</issue><spage>292</spage><epage>301</epage><pages>292-301</pages><issn>0269-8463</issn><eissn>1365-2435</eissn><abstract>1. On thermally stressful rocky shores, small, slow-moving ectotherms such as limpets exhibit morphological characteristics such as high-spired and heavily ridged shells which may reduce the likelihood of reaching stressful or lethal body temperatures. 2. The effects of shell height and shell surface area on predicted limpet body temperatures were tested with a previously developed heat budget model. The model was parameterized with morphological data from three species (Lottia gigantea, Patella vulgata and Siphonaria gigas), which differ dramatically in their morphology and in the body temperatures they are likely to reach in the field. 3. Limpet models and standard cones with higher height : length ratios lost heat to convection more readily than models with lower spired shells. 4. Heavily ridged shells lost heat to convection more readily than smoother shells, but this effect was only pronounced at high wind velocities. 5. When the heat budget model parameters were applied to a real environmental data set, the model predicts that maximum body temperatures and cumulative thermal stress vary among species. These differences are related primarily to the height : length ratio of the shell, and to a lesser extent to the presence of ridges. 6. These results suggest that some intra- and interspecific variation in limpet morphology may be phenotypic or evolutionary responses to variation in environmental temperatures. Our findings are supported by observed patterns of limpet morphological variation across natural thermal gradients.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2435.2008.01496.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-8463
ispartof Functional ecology, 2009-04, Vol.23 (2), p.292-301
issn 0269-8463
1365-2435
language eng
recordid cdi_proquest_miscellaneous_20546840
source Jstor Complete Legacy; Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animal and plant ecology
Animal mimicry
Animal morphology
Animal Morphology and Coloration
Animal, plant and microbial ecology
Autoecology
Biological and medical sciences
Body temperature
Coastal ecology
Fundamental and applied biological sciences. Psychology
General aspects
heat budget model
Human ecology
Invertebrates
Lottia gigantea
Marine
Marine ecology
Mollusca
morphological adaptation
Patella
Patella vulgata
rocky intertidal zone
shell morphology
Siphonaria
Siphonaria gigas
Surface areas
Thermal stress
Wind velocity
title Thermal stress and morphological adaptations in limpets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stress%20and%20morphological%20adaptations%20in%20limpets&rft.jtitle=Functional%20ecology&rft.au=Harley,%20Christopher%20D.%20G.&rft.date=2009-04&rft.volume=23&rft.issue=2&rft.spage=292&rft.epage=301&rft.pages=292-301&rft.issn=0269-8463&rft.eissn=1365-2435&rft_id=info:doi/10.1111/j.1365-2435.2008.01496.x&rft_dat=%3Cjstor_proqu%3E40205532%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20546840&rft_id=info:pmid/&rft_jstor_id=40205532&rfr_iscdi=true