Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula
One important mechanism plants use to cope with salinity is keeping the cytosolic Na + concentration low by sequestering Na + in vacuoles, a process facilitated by Na + /H + exchangers (NHX). There are eight NHX genes ( NHX1 through NHX8 ) identified and characterized in Arabidopsis thaliana . Bioin...
Gespeichert in:
Veröffentlicht in: | Functional & integrative genomics 2018-03, Vol.18 (2), p.141-153 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 2 |
container_start_page | 141 |
container_title | Functional & integrative genomics |
container_volume | 18 |
creator | Sandhu, Devinder Pudussery, Manju V. Kaundal, Rakesh Suarez, Donald L. Kaundal, Amita Sekhon, Rajandeep S. |
description | One important mechanism plants use to cope with salinity is keeping the cytosolic Na
+
concentration low by sequestering Na
+
in vacuoles, a process facilitated by Na
+
/H
+
exchangers (NHX). There are eight
NHX
genes (
NHX1
through
NHX8
) identified and characterized in
Arabidopsis thaliana
. Bioinformatics analyses of the known
Arabidopsis
genes enabled us to identify six
Medicago truncatula
NHX genes (
MtNHX1
,
MtNHX2
,
MtNHX3
,
MtNHX4
,
MtNHX6
, and
MtNHX7
). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving
A. thaliana
,
Glycine max
,
Phaseolus vulgaris
, and
M. truncatula
revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment,
M. truncatula
exhibited ~ 20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl
−
contents increased by 152 and 162%, respectively. Na
+
exclusion may be responsible for the relatively smaller increase in Na
+
concentration in roots under salt stress as compared to Cl
−
. Decline in tissue K
+
concentration under salinity was not surprising as some antiporters play an important role in transporting both Na
+
and K
+
.
MtNHX1
,
MtNHX6
, and
MtNHX7
display high expression in roots and leaves.
MtNHX3
,
MtNHX6
, and
MtNHX7
were induced in roots under salinity stress
.
Expression analysis results indicate that sequestering Na
+
into vacuoles may not be the principal component trait of the salt tolerance mechanism in
M. truncatula
and other component traits may be pivotal. |
doi_str_mv | 10.1007/s10142-017-0581-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2053895632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1980689311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-32f2e9da97ac4fd2dbb16d8cf2578398ff3f995dafe0981a530b5d70deb16e283</originalsourceid><addsrcrecordid>eNqFkd1rFTEQxYMotlb_AF8k4ItQ1k6Szd3kUYq1Qj9eFHwLc5PJ7Zb9uCa74PWvb65bixSKT5Mhv3MOzGHsrYCPAqA5yQJELSsQTQXaiMo-Y4eiVqZqbG2eP7zVjwP2KudbANBg1Ut2IK00AFIesv5y7MjPHSbubzChnyi1v3Fqx4HjEDj92ibKeVmx2-U28zHy6Yb4FR6fnB8XogiHDSW-oYF4xL7tdrwd-CWF1uNm5FOaB49TCXnNXkTsMr25n0fs-9nnb6fn1cX1l6-nny4qX4OeKiWjJBvQNujrGGRYr8UqGB-lboyyJkYVrdUBI4E1ArWCtQ4NBCocSaOO2IfFd5vGnzPlyfVt9tR1ONA4ZydBK2P1Ssn_oqIEgK51Uxf0_SP0dpxTucofClbGKiEKJRbKpzHnRNFtU9tj2jkBbl-bW2pzpTa3r83Zonl37zyvewoPir89FUAuQC5f-2P_E_2k6x2aFKLT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980689311</pqid></control><display><type>article</type><title>Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula</title><source>Springer Nature - Complete Springer Journals</source><creator>Sandhu, Devinder ; Pudussery, Manju V. ; Kaundal, Rakesh ; Suarez, Donald L. ; Kaundal, Amita ; Sekhon, Rajandeep S.</creator><creatorcontrib>Sandhu, Devinder ; Pudussery, Manju V. ; Kaundal, Rakesh ; Suarez, Donald L. ; Kaundal, Amita ; Sekhon, Rajandeep S.</creatorcontrib><description>One important mechanism plants use to cope with salinity is keeping the cytosolic Na
+
concentration low by sequestering Na
+
in vacuoles, a process facilitated by Na
+
/H
+
exchangers (NHX). There are eight
NHX
genes (
NHX1
through
NHX8
) identified and characterized in
Arabidopsis thaliana
. Bioinformatics analyses of the known
Arabidopsis
genes enabled us to identify six
Medicago truncatula
NHX genes (
MtNHX1
,
MtNHX2
,
MtNHX3
,
MtNHX4
,
MtNHX6
, and
MtNHX7
). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving
A. thaliana
,
Glycine max
,
Phaseolus vulgaris
, and
M. truncatula
revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment,
M. truncatula
exhibited ~ 20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl
−
contents increased by 152 and 162%, respectively. Na
+
exclusion may be responsible for the relatively smaller increase in Na
+
concentration in roots under salt stress as compared to Cl
−
. Decline in tissue K
+
concentration under salinity was not surprising as some antiporters play an important role in transporting both Na
+
and K
+
.
MtNHX1
,
MtNHX6
, and
MtNHX7
display high expression in roots and leaves.
MtNHX3
,
MtNHX6
, and
MtNHX7
were induced in roots under salinity stress
.
Expression analysis results indicate that sequestering Na
+
into vacuoles may not be the principal component trait of the salt tolerance mechanism in
M. truncatula
and other component traits may be pivotal.</description><identifier>ISSN: 1438-793X</identifier><identifier>EISSN: 1438-7948</identifier><identifier>DOI: 10.1007/s10142-017-0581-9</identifier><identifier>PMID: 29280022</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amiloride ; Animal Genetics and Genomics ; Arabidopsis thaliana ; binding sites ; Biochemistry ; Bioinformatics ; biomass ; Biomedical and Life Sciences ; Cell Biology ; chlorides ; gene expression ; genes ; Glycine max ; Hydrogen ; Leaves ; Life Sciences ; Medicago truncatula ; Microbial Genetics and Genomics ; Na+/H+-exchanging ATPase ; Original Article ; Phaseolus vulgaris ; Phylogeny ; Plant Genetics and Genomics ; potassium ; roots ; Salinity ; Salinity effects ; salt stress ; salt tolerance ; Sodium ; sodium-hydrogen antiporter ; Transmembrane domains ; Vacuoles</subject><ispartof>Functional & integrative genomics, 2018-03, Vol.18 (2), p.141-153</ispartof><rights>This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2017</rights><rights>Functional & Integrative Genomics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-32f2e9da97ac4fd2dbb16d8cf2578398ff3f995dafe0981a530b5d70deb16e283</citedby><cites>FETCH-LOGICAL-c405t-32f2e9da97ac4fd2dbb16d8cf2578398ff3f995dafe0981a530b5d70deb16e283</cites><orcidid>0000-0003-4193-3408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10142-017-0581-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10142-017-0581-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29280022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandhu, Devinder</creatorcontrib><creatorcontrib>Pudussery, Manju V.</creatorcontrib><creatorcontrib>Kaundal, Rakesh</creatorcontrib><creatorcontrib>Suarez, Donald L.</creatorcontrib><creatorcontrib>Kaundal, Amita</creatorcontrib><creatorcontrib>Sekhon, Rajandeep S.</creatorcontrib><title>Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula</title><title>Functional & integrative genomics</title><addtitle>Funct Integr Genomics</addtitle><addtitle>Funct Integr Genomics</addtitle><description>One important mechanism plants use to cope with salinity is keeping the cytosolic Na
+
concentration low by sequestering Na
+
in vacuoles, a process facilitated by Na
+
/H
+
exchangers (NHX). There are eight
NHX
genes (
NHX1
through
NHX8
) identified and characterized in
Arabidopsis thaliana
. Bioinformatics analyses of the known
Arabidopsis
genes enabled us to identify six
Medicago truncatula
NHX genes (
MtNHX1
,
MtNHX2
,
MtNHX3
,
MtNHX4
,
MtNHX6
, and
MtNHX7
). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving
A. thaliana
,
Glycine max
,
Phaseolus vulgaris
, and
M. truncatula
revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment,
M. truncatula
exhibited ~ 20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl
−
contents increased by 152 and 162%, respectively. Na
+
exclusion may be responsible for the relatively smaller increase in Na
+
concentration in roots under salt stress as compared to Cl
−
. Decline in tissue K
+
concentration under salinity was not surprising as some antiporters play an important role in transporting both Na
+
and K
+
.
MtNHX1
,
MtNHX6
, and
MtNHX7
display high expression in roots and leaves.
MtNHX3
,
MtNHX6
, and
MtNHX7
were induced in roots under salinity stress
.
Expression analysis results indicate that sequestering Na
+
into vacuoles may not be the principal component trait of the salt tolerance mechanism in
M. truncatula
and other component traits may be pivotal.</description><subject>Amiloride</subject><subject>Animal Genetics and Genomics</subject><subject>Arabidopsis thaliana</subject><subject>binding sites</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>chlorides</subject><subject>gene expression</subject><subject>genes</subject><subject>Glycine max</subject><subject>Hydrogen</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Medicago truncatula</subject><subject>Microbial Genetics and Genomics</subject><subject>Na+/H+-exchanging ATPase</subject><subject>Original Article</subject><subject>Phaseolus vulgaris</subject><subject>Phylogeny</subject><subject>Plant Genetics and Genomics</subject><subject>potassium</subject><subject>roots</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>salt stress</subject><subject>salt tolerance</subject><subject>Sodium</subject><subject>sodium-hydrogen antiporter</subject><subject>Transmembrane domains</subject><subject>Vacuoles</subject><issn>1438-793X</issn><issn>1438-7948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkd1rFTEQxYMotlb_AF8k4ItQ1k6Szd3kUYq1Qj9eFHwLc5PJ7Zb9uCa74PWvb65bixSKT5Mhv3MOzGHsrYCPAqA5yQJELSsQTQXaiMo-Y4eiVqZqbG2eP7zVjwP2KudbANBg1Ut2IK00AFIesv5y7MjPHSbubzChnyi1v3Fqx4HjEDj92ibKeVmx2-U28zHy6Yb4FR6fnB8XogiHDSW-oYF4xL7tdrwd-CWF1uNm5FOaB49TCXnNXkTsMr25n0fs-9nnb6fn1cX1l6-nny4qX4OeKiWjJBvQNujrGGRYr8UqGB-lboyyJkYVrdUBI4E1ArWCtQ4NBCocSaOO2IfFd5vGnzPlyfVt9tR1ONA4ZydBK2P1Ssn_oqIEgK51Uxf0_SP0dpxTucofClbGKiEKJRbKpzHnRNFtU9tj2jkBbl-bW2pzpTa3r83Zonl37zyvewoPir89FUAuQC5f-2P_E_2k6x2aFKLT</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Sandhu, Devinder</creator><creator>Pudussery, Manju V.</creator><creator>Kaundal, Rakesh</creator><creator>Suarez, Donald L.</creator><creator>Kaundal, Amita</creator><creator>Sekhon, Rajandeep S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4193-3408</orcidid></search><sort><creationdate>20180301</creationdate><title>Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula</title><author>Sandhu, Devinder ; Pudussery, Manju V. ; Kaundal, Rakesh ; Suarez, Donald L. ; Kaundal, Amita ; Sekhon, Rajandeep S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-32f2e9da97ac4fd2dbb16d8cf2578398ff3f995dafe0981a530b5d70deb16e283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amiloride</topic><topic>Animal Genetics and Genomics</topic><topic>Arabidopsis thaliana</topic><topic>binding sites</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>chlorides</topic><topic>gene expression</topic><topic>genes</topic><topic>Glycine max</topic><topic>Hydrogen</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Medicago truncatula</topic><topic>Microbial Genetics and Genomics</topic><topic>Na+/H+-exchanging ATPase</topic><topic>Original Article</topic><topic>Phaseolus vulgaris</topic><topic>Phylogeny</topic><topic>Plant Genetics and Genomics</topic><topic>potassium</topic><topic>roots</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>salt stress</topic><topic>salt tolerance</topic><topic>Sodium</topic><topic>sodium-hydrogen antiporter</topic><topic>Transmembrane domains</topic><topic>Vacuoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandhu, Devinder</creatorcontrib><creatorcontrib>Pudussery, Manju V.</creatorcontrib><creatorcontrib>Kaundal, Rakesh</creatorcontrib><creatorcontrib>Suarez, Donald L.</creatorcontrib><creatorcontrib>Kaundal, Amita</creatorcontrib><creatorcontrib>Sekhon, Rajandeep S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Functional & integrative genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandhu, Devinder</au><au>Pudussery, Manju V.</au><au>Kaundal, Rakesh</au><au>Suarez, Donald L.</au><au>Kaundal, Amita</au><au>Sekhon, Rajandeep S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula</atitle><jtitle>Functional & integrative genomics</jtitle><stitle>Funct Integr Genomics</stitle><addtitle>Funct Integr Genomics</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>18</volume><issue>2</issue><spage>141</spage><epage>153</epage><pages>141-153</pages><issn>1438-793X</issn><eissn>1438-7948</eissn><abstract>One important mechanism plants use to cope with salinity is keeping the cytosolic Na
+
concentration low by sequestering Na
+
in vacuoles, a process facilitated by Na
+
/H
+
exchangers (NHX). There are eight
NHX
genes (
NHX1
through
NHX8
) identified and characterized in
Arabidopsis thaliana
. Bioinformatics analyses of the known
Arabidopsis
genes enabled us to identify six
Medicago truncatula
NHX genes (
MtNHX1
,
MtNHX2
,
MtNHX3
,
MtNHX4
,
MtNHX6
, and
MtNHX7
). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving
A. thaliana
,
Glycine max
,
Phaseolus vulgaris
, and
M. truncatula
revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment,
M. truncatula
exhibited ~ 20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl
−
contents increased by 152 and 162%, respectively. Na
+
exclusion may be responsible for the relatively smaller increase in Na
+
concentration in roots under salt stress as compared to Cl
−
. Decline in tissue K
+
concentration under salinity was not surprising as some antiporters play an important role in transporting both Na
+
and K
+
.
MtNHX1
,
MtNHX6
, and
MtNHX7
display high expression in roots and leaves.
MtNHX3
,
MtNHX6
, and
MtNHX7
were induced in roots under salinity stress
.
Expression analysis results indicate that sequestering Na
+
into vacuoles may not be the principal component trait of the salt tolerance mechanism in
M. truncatula
and other component traits may be pivotal.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29280022</pmid><doi>10.1007/s10142-017-0581-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4193-3408</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-793X |
ispartof | Functional & integrative genomics, 2018-03, Vol.18 (2), p.141-153 |
issn | 1438-793X 1438-7948 |
language | eng |
recordid | cdi_proquest_miscellaneous_2053895632 |
source | Springer Nature - Complete Springer Journals |
subjects | Amiloride Animal Genetics and Genomics Arabidopsis thaliana binding sites Biochemistry Bioinformatics biomass Biomedical and Life Sciences Cell Biology chlorides gene expression genes Glycine max Hydrogen Leaves Life Sciences Medicago truncatula Microbial Genetics and Genomics Na+/H+-exchanging ATPase Original Article Phaseolus vulgaris Phylogeny Plant Genetics and Genomics potassium roots Salinity Salinity effects salt stress salt tolerance Sodium sodium-hydrogen antiporter Transmembrane domains Vacuoles |
title | Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20characterization%20and%20expression%20analysis%20of%20the%20Na+/H+%20exchanger%20gene%20family%20in%20Medicago%20truncatula&rft.jtitle=Functional%20&%20integrative%20genomics&rft.au=Sandhu,%20Devinder&rft.date=2018-03-01&rft.volume=18&rft.issue=2&rft.spage=141&rft.epage=153&rft.pages=141-153&rft.issn=1438-793X&rft.eissn=1438-7948&rft_id=info:doi/10.1007/s10142-017-0581-9&rft_dat=%3Cproquest_cross%3E1980689311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980689311&rft_id=info:pmid/29280022&rfr_iscdi=true |