Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula

One important mechanism plants use to cope with salinity is keeping the cytosolic Na + concentration low by sequestering Na + in vacuoles, a process facilitated by Na + /H + exchangers (NHX). There are eight NHX genes ( NHX1 through NHX8 ) identified and characterized in Arabidopsis thaliana . Bioin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional & integrative genomics 2018-03, Vol.18 (2), p.141-153
Hauptverfasser: Sandhu, Devinder, Pudussery, Manju V., Kaundal, Rakesh, Suarez, Donald L., Kaundal, Amita, Sekhon, Rajandeep S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 2
container_start_page 141
container_title Functional & integrative genomics
container_volume 18
creator Sandhu, Devinder
Pudussery, Manju V.
Kaundal, Rakesh
Suarez, Donald L.
Kaundal, Amita
Sekhon, Rajandeep S.
description One important mechanism plants use to cope with salinity is keeping the cytosolic Na + concentration low by sequestering Na + in vacuoles, a process facilitated by Na + /H + exchangers (NHX). There are eight NHX genes ( NHX1 through NHX8 ) identified and characterized in Arabidopsis thaliana . Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes ( MtNHX1 , MtNHX2 , MtNHX3 , MtNHX4 , MtNHX6 , and MtNHX7 ). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana , Glycine max , Phaseolus vulgaris , and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~ 20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl − contents increased by 152 and 162%, respectively. Na + exclusion may be responsible for the relatively smaller increase in Na + concentration in roots under salt stress as compared to Cl − . Decline in tissue K + concentration under salinity was not surprising as some antiporters play an important role in transporting both Na + and K + . MtNHX1 , MtNHX6 , and MtNHX7 display high expression in roots and leaves. MtNHX3 , MtNHX6 , and MtNHX7 were induced in roots under salinity stress . Expression analysis results indicate that sequestering Na + into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.
doi_str_mv 10.1007/s10142-017-0581-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2053895632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1980689311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-32f2e9da97ac4fd2dbb16d8cf2578398ff3f995dafe0981a530b5d70deb16e283</originalsourceid><addsrcrecordid>eNqFkd1rFTEQxYMotlb_AF8k4ItQ1k6Szd3kUYq1Qj9eFHwLc5PJ7Zb9uCa74PWvb65bixSKT5Mhv3MOzGHsrYCPAqA5yQJELSsQTQXaiMo-Y4eiVqZqbG2eP7zVjwP2KudbANBg1Ut2IK00AFIesv5y7MjPHSbubzChnyi1v3Fqx4HjEDj92ibKeVmx2-U28zHy6Yb4FR6fnB8XogiHDSW-oYF4xL7tdrwd-CWF1uNm5FOaB49TCXnNXkTsMr25n0fs-9nnb6fn1cX1l6-nny4qX4OeKiWjJBvQNujrGGRYr8UqGB-lboyyJkYVrdUBI4E1ArWCtQ4NBCocSaOO2IfFd5vGnzPlyfVt9tR1ONA4ZydBK2P1Ssn_oqIEgK51Uxf0_SP0dpxTucofClbGKiEKJRbKpzHnRNFtU9tj2jkBbl-bW2pzpTa3r83Zonl37zyvewoPir89FUAuQC5f-2P_E_2k6x2aFKLT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980689311</pqid></control><display><type>article</type><title>Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula</title><source>Springer Nature - Complete Springer Journals</source><creator>Sandhu, Devinder ; Pudussery, Manju V. ; Kaundal, Rakesh ; Suarez, Donald L. ; Kaundal, Amita ; Sekhon, Rajandeep S.</creator><creatorcontrib>Sandhu, Devinder ; Pudussery, Manju V. ; Kaundal, Rakesh ; Suarez, Donald L. ; Kaundal, Amita ; Sekhon, Rajandeep S.</creatorcontrib><description>One important mechanism plants use to cope with salinity is keeping the cytosolic Na + concentration low by sequestering Na + in vacuoles, a process facilitated by Na + /H + exchangers (NHX). There are eight NHX genes ( NHX1 through NHX8 ) identified and characterized in Arabidopsis thaliana . Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes ( MtNHX1 , MtNHX2 , MtNHX3 , MtNHX4 , MtNHX6 , and MtNHX7 ). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana , Glycine max , Phaseolus vulgaris , and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~ 20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl − contents increased by 152 and 162%, respectively. Na + exclusion may be responsible for the relatively smaller increase in Na + concentration in roots under salt stress as compared to Cl − . Decline in tissue K + concentration under salinity was not surprising as some antiporters play an important role in transporting both Na + and K + . MtNHX1 , MtNHX6 , and MtNHX7 display high expression in roots and leaves. MtNHX3 , MtNHX6 , and MtNHX7 were induced in roots under salinity stress . Expression analysis results indicate that sequestering Na + into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.</description><identifier>ISSN: 1438-793X</identifier><identifier>EISSN: 1438-7948</identifier><identifier>DOI: 10.1007/s10142-017-0581-9</identifier><identifier>PMID: 29280022</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amiloride ; Animal Genetics and Genomics ; Arabidopsis thaliana ; binding sites ; Biochemistry ; Bioinformatics ; biomass ; Biomedical and Life Sciences ; Cell Biology ; chlorides ; gene expression ; genes ; Glycine max ; Hydrogen ; Leaves ; Life Sciences ; Medicago truncatula ; Microbial Genetics and Genomics ; Na+/H+-exchanging ATPase ; Original Article ; Phaseolus vulgaris ; Phylogeny ; Plant Genetics and Genomics ; potassium ; roots ; Salinity ; Salinity effects ; salt stress ; salt tolerance ; Sodium ; sodium-hydrogen antiporter ; Transmembrane domains ; Vacuoles</subject><ispartof>Functional &amp; integrative genomics, 2018-03, Vol.18 (2), p.141-153</ispartof><rights>This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2017</rights><rights>Functional &amp; Integrative Genomics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-32f2e9da97ac4fd2dbb16d8cf2578398ff3f995dafe0981a530b5d70deb16e283</citedby><cites>FETCH-LOGICAL-c405t-32f2e9da97ac4fd2dbb16d8cf2578398ff3f995dafe0981a530b5d70deb16e283</cites><orcidid>0000-0003-4193-3408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10142-017-0581-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10142-017-0581-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29280022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandhu, Devinder</creatorcontrib><creatorcontrib>Pudussery, Manju V.</creatorcontrib><creatorcontrib>Kaundal, Rakesh</creatorcontrib><creatorcontrib>Suarez, Donald L.</creatorcontrib><creatorcontrib>Kaundal, Amita</creatorcontrib><creatorcontrib>Sekhon, Rajandeep S.</creatorcontrib><title>Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula</title><title>Functional &amp; integrative genomics</title><addtitle>Funct Integr Genomics</addtitle><addtitle>Funct Integr Genomics</addtitle><description>One important mechanism plants use to cope with salinity is keeping the cytosolic Na + concentration low by sequestering Na + in vacuoles, a process facilitated by Na + /H + exchangers (NHX). There are eight NHX genes ( NHX1 through NHX8 ) identified and characterized in Arabidopsis thaliana . Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes ( MtNHX1 , MtNHX2 , MtNHX3 , MtNHX4 , MtNHX6 , and MtNHX7 ). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana , Glycine max , Phaseolus vulgaris , and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~ 20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl − contents increased by 152 and 162%, respectively. Na + exclusion may be responsible for the relatively smaller increase in Na + concentration in roots under salt stress as compared to Cl − . Decline in tissue K + concentration under salinity was not surprising as some antiporters play an important role in transporting both Na + and K + . MtNHX1 , MtNHX6 , and MtNHX7 display high expression in roots and leaves. MtNHX3 , MtNHX6 , and MtNHX7 were induced in roots under salinity stress . Expression analysis results indicate that sequestering Na + into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.</description><subject>Amiloride</subject><subject>Animal Genetics and Genomics</subject><subject>Arabidopsis thaliana</subject><subject>binding sites</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>chlorides</subject><subject>gene expression</subject><subject>genes</subject><subject>Glycine max</subject><subject>Hydrogen</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Medicago truncatula</subject><subject>Microbial Genetics and Genomics</subject><subject>Na+/H+-exchanging ATPase</subject><subject>Original Article</subject><subject>Phaseolus vulgaris</subject><subject>Phylogeny</subject><subject>Plant Genetics and Genomics</subject><subject>potassium</subject><subject>roots</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>salt stress</subject><subject>salt tolerance</subject><subject>Sodium</subject><subject>sodium-hydrogen antiporter</subject><subject>Transmembrane domains</subject><subject>Vacuoles</subject><issn>1438-793X</issn><issn>1438-7948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkd1rFTEQxYMotlb_AF8k4ItQ1k6Szd3kUYq1Qj9eFHwLc5PJ7Zb9uCa74PWvb65bixSKT5Mhv3MOzGHsrYCPAqA5yQJELSsQTQXaiMo-Y4eiVqZqbG2eP7zVjwP2KudbANBg1Ut2IK00AFIesv5y7MjPHSbubzChnyi1v3Fqx4HjEDj92ibKeVmx2-U28zHy6Yb4FR6fnB8XogiHDSW-oYF4xL7tdrwd-CWF1uNm5FOaB49TCXnNXkTsMr25n0fs-9nnb6fn1cX1l6-nny4qX4OeKiWjJBvQNujrGGRYr8UqGB-lboyyJkYVrdUBI4E1ArWCtQ4NBCocSaOO2IfFd5vGnzPlyfVt9tR1ONA4ZydBK2P1Ssn_oqIEgK51Uxf0_SP0dpxTucofClbGKiEKJRbKpzHnRNFtU9tj2jkBbl-bW2pzpTa3r83Zonl37zyvewoPir89FUAuQC5f-2P_E_2k6x2aFKLT</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Sandhu, Devinder</creator><creator>Pudussery, Manju V.</creator><creator>Kaundal, Rakesh</creator><creator>Suarez, Donald L.</creator><creator>Kaundal, Amita</creator><creator>Sekhon, Rajandeep S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4193-3408</orcidid></search><sort><creationdate>20180301</creationdate><title>Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula</title><author>Sandhu, Devinder ; Pudussery, Manju V. ; Kaundal, Rakesh ; Suarez, Donald L. ; Kaundal, Amita ; Sekhon, Rajandeep S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-32f2e9da97ac4fd2dbb16d8cf2578398ff3f995dafe0981a530b5d70deb16e283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amiloride</topic><topic>Animal Genetics and Genomics</topic><topic>Arabidopsis thaliana</topic><topic>binding sites</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>chlorides</topic><topic>gene expression</topic><topic>genes</topic><topic>Glycine max</topic><topic>Hydrogen</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Medicago truncatula</topic><topic>Microbial Genetics and Genomics</topic><topic>Na+/H+-exchanging ATPase</topic><topic>Original Article</topic><topic>Phaseolus vulgaris</topic><topic>Phylogeny</topic><topic>Plant Genetics and Genomics</topic><topic>potassium</topic><topic>roots</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>salt stress</topic><topic>salt tolerance</topic><topic>Sodium</topic><topic>sodium-hydrogen antiporter</topic><topic>Transmembrane domains</topic><topic>Vacuoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandhu, Devinder</creatorcontrib><creatorcontrib>Pudussery, Manju V.</creatorcontrib><creatorcontrib>Kaundal, Rakesh</creatorcontrib><creatorcontrib>Suarez, Donald L.</creatorcontrib><creatorcontrib>Kaundal, Amita</creatorcontrib><creatorcontrib>Sekhon, Rajandeep S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Functional &amp; integrative genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandhu, Devinder</au><au>Pudussery, Manju V.</au><au>Kaundal, Rakesh</au><au>Suarez, Donald L.</au><au>Kaundal, Amita</au><au>Sekhon, Rajandeep S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula</atitle><jtitle>Functional &amp; integrative genomics</jtitle><stitle>Funct Integr Genomics</stitle><addtitle>Funct Integr Genomics</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>18</volume><issue>2</issue><spage>141</spage><epage>153</epage><pages>141-153</pages><issn>1438-793X</issn><eissn>1438-7948</eissn><abstract>One important mechanism plants use to cope with salinity is keeping the cytosolic Na + concentration low by sequestering Na + in vacuoles, a process facilitated by Na + /H + exchangers (NHX). There are eight NHX genes ( NHX1 through NHX8 ) identified and characterized in Arabidopsis thaliana . Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes ( MtNHX1 , MtNHX2 , MtNHX3 , MtNHX4 , MtNHX6 , and MtNHX7 ). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana , Glycine max , Phaseolus vulgaris , and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~ 20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl − contents increased by 152 and 162%, respectively. Na + exclusion may be responsible for the relatively smaller increase in Na + concentration in roots under salt stress as compared to Cl − . Decline in tissue K + concentration under salinity was not surprising as some antiporters play an important role in transporting both Na + and K + . MtNHX1 , MtNHX6 , and MtNHX7 display high expression in roots and leaves. MtNHX3 , MtNHX6 , and MtNHX7 were induced in roots under salinity stress . Expression analysis results indicate that sequestering Na + into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29280022</pmid><doi>10.1007/s10142-017-0581-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4193-3408</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1438-793X
ispartof Functional & integrative genomics, 2018-03, Vol.18 (2), p.141-153
issn 1438-793X
1438-7948
language eng
recordid cdi_proquest_miscellaneous_2053895632
source Springer Nature - Complete Springer Journals
subjects Amiloride
Animal Genetics and Genomics
Arabidopsis thaliana
binding sites
Biochemistry
Bioinformatics
biomass
Biomedical and Life Sciences
Cell Biology
chlorides
gene expression
genes
Glycine max
Hydrogen
Leaves
Life Sciences
Medicago truncatula
Microbial Genetics and Genomics
Na+/H+-exchanging ATPase
Original Article
Phaseolus vulgaris
Phylogeny
Plant Genetics and Genomics
potassium
roots
Salinity
Salinity effects
salt stress
salt tolerance
Sodium
sodium-hydrogen antiporter
Transmembrane domains
Vacuoles
title Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20characterization%20and%20expression%20analysis%20of%20the%20Na+/H+%20exchanger%20gene%20family%20in%20Medicago%20truncatula&rft.jtitle=Functional%20&%20integrative%20genomics&rft.au=Sandhu,%20Devinder&rft.date=2018-03-01&rft.volume=18&rft.issue=2&rft.spage=141&rft.epage=153&rft.pages=141-153&rft.issn=1438-793X&rft.eissn=1438-7948&rft_id=info:doi/10.1007/s10142-017-0581-9&rft_dat=%3Cproquest_cross%3E1980689311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980689311&rft_id=info:pmid/29280022&rfr_iscdi=true