Coarse‐grained molecular dynamics simulations of polymerization with forward and backward reactions
We develop novel parallel algorithms that allow molecular dynamics simulations in which byproduct molecules are created and removed because of the chemical reactions during the molecular dynamics simulation. To prevent large increases in the potential energy, we introduce the byproduct molecules smo...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2018-08, Vol.39 (22), p.1764-1778 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1778 |
---|---|
container_issue | 22 |
container_start_page | 1764 |
container_title | Journal of computational chemistry |
container_volume | 39 |
creator | Krajniak, Jakub Zhang, Zidan Pandiyan, Sudharsan Nies, Eric Samaey, Giovanni |
description | We develop novel parallel algorithms that allow molecular dynamics simulations in which byproduct molecules are created and removed because of the chemical reactions during the molecular dynamics simulation. To prevent large increases in the potential energy, we introduce the byproduct molecules smoothly by changing the non‐bonded interactions gradually. To simulate complete equilibrium reactions, we allow the byproduct molecules attack and destroy created bonds. Modeling of such reactions are, for instance, important to study the pore formation due to the presence of e.g. water molecules or development of polymer morphology during the process of splitting off byproduct molecules. Another concept that could be studied is the degradation of polymeric materials, a very important topic in a recycling of polymer waste. We illustrate the method by simulating the polymerization of polyethylene terephthalate (PET) at the coarse‐grained level as an example of a polycondensation reaction with water as a byproduct. The algorithms are implemented in a publicly available software package and are easily accessible using a domain‐specific language that describes chemical reactions in an input configuration file. © 2018 Wiley Periodicals, Inc.
Within this article, we provide a general purpose computational tool to simulate chemical reactions at the coarse‐grained level. The example of polymerization of polyethylene terephthalate demonstrates the capability for simulating forward and backward reactions, including the splitting off the water molecules. The software package uses parallelization to speed up the calculations. It uses domain specific language to set up all the reactions in a user‐friendly way. |
doi_str_mv | 10.1002/jcc.25348 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2053272834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092469854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-b5b163b1a5fbf72ae8150daf4a7a1252dbe06df0aaf8cbceee7f8817906595e3</originalsourceid><addsrcrecordid>eNp10LtO5DAUBmALLYLhUvACyNI2S5HBduLELlfRchMSDQVddOIc73pI4ll7otFQ8Qg8I09CZgYokKgsH33n19FPyAlnU86YOJ8ZMxUyzdQOmXCm80Sr4uEHmTCuRaJyyffJQYwzxlgq82yP7AutlMq0nhAsPYSIr88vfwO4Hhva-RbN0EKgzaqHzplIo-vGwcL5PlJv6dy3qw6De9qM6NIt_lHrwxJCQ6FvaA3mcfMJCGazdUR2LbQRj9_fQ3J_8ee-vEpu7y6vy9-3iUnHg5Ja1jxPaw7S1rYQgIpL1oDNoAAupGhqZHljGYBVpjaIWFileKFZLrXE9JD82sbOg_8_YFxUnYsG2xZ69EOsBJOpKIRKs5H-_EJnfgj9eNyotMhyreRanW2VCT7GgLaaB9dBWFWcVevqq7H6alP9aE_fE4e6w-ZTfnQ9gvMtWLoWV98nVTdluY18A0KgkMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092469854</pqid></control><display><type>article</type><title>Coarse‐grained molecular dynamics simulations of polymerization with forward and backward reactions</title><source>Wiley Journals</source><creator>Krajniak, Jakub ; Zhang, Zidan ; Pandiyan, Sudharsan ; Nies, Eric ; Samaey, Giovanni</creator><creatorcontrib>Krajniak, Jakub ; Zhang, Zidan ; Pandiyan, Sudharsan ; Nies, Eric ; Samaey, Giovanni</creatorcontrib><description>We develop novel parallel algorithms that allow molecular dynamics simulations in which byproduct molecules are created and removed because of the chemical reactions during the molecular dynamics simulation. To prevent large increases in the potential energy, we introduce the byproduct molecules smoothly by changing the non‐bonded interactions gradually. To simulate complete equilibrium reactions, we allow the byproduct molecules attack and destroy created bonds. Modeling of such reactions are, for instance, important to study the pore formation due to the presence of e.g. water molecules or development of polymer morphology during the process of splitting off byproduct molecules. Another concept that could be studied is the degradation of polymeric materials, a very important topic in a recycling of polymer waste. We illustrate the method by simulating the polymerization of polyethylene terephthalate (PET) at the coarse‐grained level as an example of a polycondensation reaction with water as a byproduct. The algorithms are implemented in a publicly available software package and are easily accessible using a domain‐specific language that describes chemical reactions in an input configuration file. © 2018 Wiley Periodicals, Inc.
Within this article, we provide a general purpose computational tool to simulate chemical reactions at the coarse‐grained level. The example of polymerization of polyethylene terephthalate demonstrates the capability for simulating forward and backward reactions, including the splitting off the water molecules. The software package uses parallelization to speed up the calculations. It uses domain specific language to set up all the reactions in a user‐friendly way.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.25348</identifier><identifier>PMID: 29888499</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Byproducts ; Chemical attack ; Chemical reactions ; Computer simulation ; Domain specific languages ; equilibrium reactions ; hydrolysis ; Molecular dynamics ; Morphology ; Organic chemistry ; PET ; Polycondensation reactions ; Polyethylene terephthalate ; Polymerization ; Pore formation ; Potential energy ; simulation ; soft matter ; Water chemistry ; water splitting</subject><ispartof>Journal of computational chemistry, 2018-08, Vol.39 (22), p.1764-1778</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-b5b163b1a5fbf72ae8150daf4a7a1252dbe06df0aaf8cbceee7f8817906595e3</citedby><cites>FETCH-LOGICAL-c3888-b5b163b1a5fbf72ae8150daf4a7a1252dbe06df0aaf8cbceee7f8817906595e3</cites><orcidid>0000-0001-9372-6975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.25348$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.25348$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29888499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krajniak, Jakub</creatorcontrib><creatorcontrib>Zhang, Zidan</creatorcontrib><creatorcontrib>Pandiyan, Sudharsan</creatorcontrib><creatorcontrib>Nies, Eric</creatorcontrib><creatorcontrib>Samaey, Giovanni</creatorcontrib><title>Coarse‐grained molecular dynamics simulations of polymerization with forward and backward reactions</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>We develop novel parallel algorithms that allow molecular dynamics simulations in which byproduct molecules are created and removed because of the chemical reactions during the molecular dynamics simulation. To prevent large increases in the potential energy, we introduce the byproduct molecules smoothly by changing the non‐bonded interactions gradually. To simulate complete equilibrium reactions, we allow the byproduct molecules attack and destroy created bonds. Modeling of such reactions are, for instance, important to study the pore formation due to the presence of e.g. water molecules or development of polymer morphology during the process of splitting off byproduct molecules. Another concept that could be studied is the degradation of polymeric materials, a very important topic in a recycling of polymer waste. We illustrate the method by simulating the polymerization of polyethylene terephthalate (PET) at the coarse‐grained level as an example of a polycondensation reaction with water as a byproduct. The algorithms are implemented in a publicly available software package and are easily accessible using a domain‐specific language that describes chemical reactions in an input configuration file. © 2018 Wiley Periodicals, Inc.
Within this article, we provide a general purpose computational tool to simulate chemical reactions at the coarse‐grained level. The example of polymerization of polyethylene terephthalate demonstrates the capability for simulating forward and backward reactions, including the splitting off the water molecules. The software package uses parallelization to speed up the calculations. It uses domain specific language to set up all the reactions in a user‐friendly way.</description><subject>Algorithms</subject><subject>Byproducts</subject><subject>Chemical attack</subject><subject>Chemical reactions</subject><subject>Computer simulation</subject><subject>Domain specific languages</subject><subject>equilibrium reactions</subject><subject>hydrolysis</subject><subject>Molecular dynamics</subject><subject>Morphology</subject><subject>Organic chemistry</subject><subject>PET</subject><subject>Polycondensation reactions</subject><subject>Polyethylene terephthalate</subject><subject>Polymerization</subject><subject>Pore formation</subject><subject>Potential energy</subject><subject>simulation</subject><subject>soft matter</subject><subject>Water chemistry</subject><subject>water splitting</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10LtO5DAUBmALLYLhUvACyNI2S5HBduLELlfRchMSDQVddOIc73pI4ll7otFQ8Qg8I09CZgYokKgsH33n19FPyAlnU86YOJ8ZMxUyzdQOmXCm80Sr4uEHmTCuRaJyyffJQYwzxlgq82yP7AutlMq0nhAsPYSIr88vfwO4Hhva-RbN0EKgzaqHzplIo-vGwcL5PlJv6dy3qw6De9qM6NIt_lHrwxJCQ6FvaA3mcfMJCGazdUR2LbQRj9_fQ3J_8ee-vEpu7y6vy9-3iUnHg5Ja1jxPaw7S1rYQgIpL1oDNoAAupGhqZHljGYBVpjaIWFileKFZLrXE9JD82sbOg_8_YFxUnYsG2xZ69EOsBJOpKIRKs5H-_EJnfgj9eNyotMhyreRanW2VCT7GgLaaB9dBWFWcVevqq7H6alP9aE_fE4e6w-ZTfnQ9gvMtWLoWV98nVTdluY18A0KgkMU</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Krajniak, Jakub</creator><creator>Zhang, Zidan</creator><creator>Pandiyan, Sudharsan</creator><creator>Nies, Eric</creator><creator>Samaey, Giovanni</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9372-6975</orcidid></search><sort><creationdate>20180815</creationdate><title>Coarse‐grained molecular dynamics simulations of polymerization with forward and backward reactions</title><author>Krajniak, Jakub ; Zhang, Zidan ; Pandiyan, Sudharsan ; Nies, Eric ; Samaey, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-b5b163b1a5fbf72ae8150daf4a7a1252dbe06df0aaf8cbceee7f8817906595e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Byproducts</topic><topic>Chemical attack</topic><topic>Chemical reactions</topic><topic>Computer simulation</topic><topic>Domain specific languages</topic><topic>equilibrium reactions</topic><topic>hydrolysis</topic><topic>Molecular dynamics</topic><topic>Morphology</topic><topic>Organic chemistry</topic><topic>PET</topic><topic>Polycondensation reactions</topic><topic>Polyethylene terephthalate</topic><topic>Polymerization</topic><topic>Pore formation</topic><topic>Potential energy</topic><topic>simulation</topic><topic>soft matter</topic><topic>Water chemistry</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krajniak, Jakub</creatorcontrib><creatorcontrib>Zhang, Zidan</creatorcontrib><creatorcontrib>Pandiyan, Sudharsan</creatorcontrib><creatorcontrib>Nies, Eric</creatorcontrib><creatorcontrib>Samaey, Giovanni</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krajniak, Jakub</au><au>Zhang, Zidan</au><au>Pandiyan, Sudharsan</au><au>Nies, Eric</au><au>Samaey, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse‐grained molecular dynamics simulations of polymerization with forward and backward reactions</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2018-08-15</date><risdate>2018</risdate><volume>39</volume><issue>22</issue><spage>1764</spage><epage>1778</epage><pages>1764-1778</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>We develop novel parallel algorithms that allow molecular dynamics simulations in which byproduct molecules are created and removed because of the chemical reactions during the molecular dynamics simulation. To prevent large increases in the potential energy, we introduce the byproduct molecules smoothly by changing the non‐bonded interactions gradually. To simulate complete equilibrium reactions, we allow the byproduct molecules attack and destroy created bonds. Modeling of such reactions are, for instance, important to study the pore formation due to the presence of e.g. water molecules or development of polymer morphology during the process of splitting off byproduct molecules. Another concept that could be studied is the degradation of polymeric materials, a very important topic in a recycling of polymer waste. We illustrate the method by simulating the polymerization of polyethylene terephthalate (PET) at the coarse‐grained level as an example of a polycondensation reaction with water as a byproduct. The algorithms are implemented in a publicly available software package and are easily accessible using a domain‐specific language that describes chemical reactions in an input configuration file. © 2018 Wiley Periodicals, Inc.
Within this article, we provide a general purpose computational tool to simulate chemical reactions at the coarse‐grained level. The example of polymerization of polyethylene terephthalate demonstrates the capability for simulating forward and backward reactions, including the splitting off the water molecules. The software package uses parallelization to speed up the calculations. It uses domain specific language to set up all the reactions in a user‐friendly way.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29888499</pmid><doi>10.1002/jcc.25348</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9372-6975</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2018-08, Vol.39 (22), p.1764-1778 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_proquest_miscellaneous_2053272834 |
source | Wiley Journals |
subjects | Algorithms Byproducts Chemical attack Chemical reactions Computer simulation Domain specific languages equilibrium reactions hydrolysis Molecular dynamics Morphology Organic chemistry PET Polycondensation reactions Polyethylene terephthalate Polymerization Pore formation Potential energy simulation soft matter Water chemistry water splitting |
title | Coarse‐grained molecular dynamics simulations of polymerization with forward and backward reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse%E2%80%90grained%20molecular%20dynamics%20simulations%20of%20polymerization%20with%20forward%20and%20backward%20reactions&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Krajniak,%20Jakub&rft.date=2018-08-15&rft.volume=39&rft.issue=22&rft.spage=1764&rft.epage=1778&rft.pages=1764-1778&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.25348&rft_dat=%3Cproquest_cross%3E2092469854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092469854&rft_id=info:pmid/29888499&rfr_iscdi=true |