Relationship between chlorine consumption and chlorination by-products formation for model compounds
The objective of this research is to investigate the relationship between chlorine decay and the formations of disinfection by-products (DBP), including trichloromethane (TCM) and chloroacetic acid (CAA) in the presence of four model compounds, i.e., resorcinol, phloroglucinol, p-hydroxybenzoic acid...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2006-08, Vol.64 (7), p.1196-1203 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1203 |
---|---|
container_issue | 7 |
container_start_page | 1196 |
container_title | Chemosphere (Oxford) |
container_volume | 64 |
creator | Chang, E.E. Chiang, P.C. Chao, S.H. Lin, Y.L. |
description | The objective of this research is to investigate the relationship between chlorine decay and the formations of disinfection by-products (DBP), including trichloromethane (TCM) and chloroacetic acid (CAA) in the presence of four model compounds, i.e., resorcinol, phloroglucinol,
p-hydroxybenzoic acid, and
m-hydroxybenzoic acid. The chlorine degradation in model compounds with OH and/or COOH functional groups were rapid after chlorination. The TCM yields of carboxylic group substituted compounds (3-hydroxybenzoic acid [3-HBA], 4-hydroxybenzoic acid [4-HBA]) were found to be lower than that of the
m-dihydroxy substituted compounds. Phloroglucinol, with one more OH substitution group than resorcinol, tends to form significant amounts of CAA after chlorination. However, it was observed that with the COOH substitution of 3-HBA and 4-HBA tend to exhibit more CAA formation potential than resorcinol. The developed parallel second and first-order reaction model for chlorine demand has been successfully utilized for TCM, CAA and DBP formation modeling. A high correlation between CAA and TCM was observed for the model compounds. |
doi_str_mv | 10.1016/j.chemosphere.2005.11.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20530416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653505013846</els_id><sourcerecordid>14781733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-e893c9a26b6f678463afa6e05b219081ea3ca18c93202ff4b6e9885884b7af9f3</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhkVISTZpXiG4h_RmV2PJsnQsS9oUAoXSnoUsj1gttuVKdkLevtrulvTWniQ03zca5ifkHdAKKIgP-8rucAxp3mHEqqa0qQAqysQZ2YBsVQm1kudkQylvStGw5pJcpbSnNMuNuiCXIDjUXLEN6b_hYBYfprTzc9Hh8ow4FXY3hOgnLGwurON8AAoz9X8Kv42ieynnGPrVLqlwIY7H13wrxtDjkOVxDuvUp7fkjTNDwpvTeU1-fLr_vn0oH79-_rL9-FhaLtqlRKmYVaYWnXCilVww44xA2nQ1KCoBDbMGpFWsprVzvBOopGyk5F1rnHLsmrw_9s1j_VwxLXr0yeIwmAnDmnRNG0Y5iH-CwFsJLWMZVEfQxpBSRKfn6EcTXzRQfchC7_VfWehDFhpA5yyye3v6ZO1G7F_N0_IzcHcCTLJmcNFM1qdXTuYu0KrMbY8c5t09eYw6WY-Txd5HtIvug_-PcX4BeEmwBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14781733</pqid></control><display><type>article</type><title>Relationship between chlorine consumption and chlorination by-products formation for model compounds</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Chang, E.E. ; Chiang, P.C. ; Chao, S.H. ; Lin, Y.L.</creator><creatorcontrib>Chang, E.E. ; Chiang, P.C. ; Chao, S.H. ; Lin, Y.L.</creatorcontrib><description>The objective of this research is to investigate the relationship between chlorine decay and the formations of disinfection by-products (DBP), including trichloromethane (TCM) and chloroacetic acid (CAA) in the presence of four model compounds, i.e., resorcinol, phloroglucinol,
p-hydroxybenzoic acid, and
m-hydroxybenzoic acid. The chlorine degradation in model compounds with OH and/or COOH functional groups were rapid after chlorination. The TCM yields of carboxylic group substituted compounds (3-hydroxybenzoic acid [3-HBA], 4-hydroxybenzoic acid [4-HBA]) were found to be lower than that of the
m-dihydroxy substituted compounds. Phloroglucinol, with one more OH substitution group than resorcinol, tends to form significant amounts of CAA after chlorination. However, it was observed that with the COOH substitution of 3-HBA and 4-HBA tend to exhibit more CAA formation potential than resorcinol. The developed parallel second and first-order reaction model for chlorine demand has been successfully utilized for TCM, CAA and DBP formation modeling. A high correlation between CAA and TCM was observed for the model compounds.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2005.11.036</identifier><identifier>PMID: 16412493</identifier><identifier>CODEN: CMSHAF</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acetates - chemistry ; Applied sciences ; Carbon - analysis ; Chlorine - analysis ; Chlorine - chemistry ; Chlorine consumption ; Chlorine decay model ; Chloroacetic acids (CAA) ; Chloroform - chemistry ; Disinfectants - analysis ; Disinfectants - chemistry ; Drinking water and swimming-pool water. Desalination ; Exact sciences and technology ; Hydroxybenzoates - chemistry ; Hydroxybenzoic acid (HBA) ; Parabens - chemistry ; Phloroglucinol (P) ; Phloroglucinol - chemistry ; Pollution ; Resorcinol (R) ; Resorcinols - chemistry ; Tichloromethane (TCM) ; Water Pollutants, Chemical ; Water Purification ; Water treatment and pollution</subject><ispartof>Chemosphere (Oxford), 2006-08, Vol.64 (7), p.1196-1203</ispartof><rights>2005 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-e893c9a26b6f678463afa6e05b219081ea3ca18c93202ff4b6e9885884b7af9f3</citedby><cites>FETCH-LOGICAL-c467t-e893c9a26b6f678463afa6e05b219081ea3ca18c93202ff4b6e9885884b7af9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653505013846$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18036179$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16412493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, E.E.</creatorcontrib><creatorcontrib>Chiang, P.C.</creatorcontrib><creatorcontrib>Chao, S.H.</creatorcontrib><creatorcontrib>Lin, Y.L.</creatorcontrib><title>Relationship between chlorine consumption and chlorination by-products formation for model compounds</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>The objective of this research is to investigate the relationship between chlorine decay and the formations of disinfection by-products (DBP), including trichloromethane (TCM) and chloroacetic acid (CAA) in the presence of four model compounds, i.e., resorcinol, phloroglucinol,
p-hydroxybenzoic acid, and
m-hydroxybenzoic acid. The chlorine degradation in model compounds with OH and/or COOH functional groups were rapid after chlorination. The TCM yields of carboxylic group substituted compounds (3-hydroxybenzoic acid [3-HBA], 4-hydroxybenzoic acid [4-HBA]) were found to be lower than that of the
m-dihydroxy substituted compounds. Phloroglucinol, with one more OH substitution group than resorcinol, tends to form significant amounts of CAA after chlorination. However, it was observed that with the COOH substitution of 3-HBA and 4-HBA tend to exhibit more CAA formation potential than resorcinol. The developed parallel second and first-order reaction model for chlorine demand has been successfully utilized for TCM, CAA and DBP formation modeling. A high correlation between CAA and TCM was observed for the model compounds.</description><subject>Acetates - chemistry</subject><subject>Applied sciences</subject><subject>Carbon - analysis</subject><subject>Chlorine - analysis</subject><subject>Chlorine - chemistry</subject><subject>Chlorine consumption</subject><subject>Chlorine decay model</subject><subject>Chloroacetic acids (CAA)</subject><subject>Chloroform - chemistry</subject><subject>Disinfectants - analysis</subject><subject>Disinfectants - chemistry</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Exact sciences and technology</subject><subject>Hydroxybenzoates - chemistry</subject><subject>Hydroxybenzoic acid (HBA)</subject><subject>Parabens - chemistry</subject><subject>Phloroglucinol (P)</subject><subject>Phloroglucinol - chemistry</subject><subject>Pollution</subject><subject>Resorcinol (R)</subject><subject>Resorcinols - chemistry</subject><subject>Tichloromethane (TCM)</subject><subject>Water Pollutants, Chemical</subject><subject>Water Purification</subject><subject>Water treatment and pollution</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFq3DAQhkVISTZpXiG4h_RmV2PJsnQsS9oUAoXSnoUsj1gttuVKdkLevtrulvTWniQ03zca5ifkHdAKKIgP-8rucAxp3mHEqqa0qQAqysQZ2YBsVQm1kudkQylvStGw5pJcpbSnNMuNuiCXIDjUXLEN6b_hYBYfprTzc9Hh8ow4FXY3hOgnLGwurON8AAoz9X8Kv42ieynnGPrVLqlwIY7H13wrxtDjkOVxDuvUp7fkjTNDwpvTeU1-fLr_vn0oH79-_rL9-FhaLtqlRKmYVaYWnXCilVww44xA2nQ1KCoBDbMGpFWsprVzvBOopGyk5F1rnHLsmrw_9s1j_VwxLXr0yeIwmAnDmnRNG0Y5iH-CwFsJLWMZVEfQxpBSRKfn6EcTXzRQfchC7_VfWehDFhpA5yyye3v6ZO1G7F_N0_IzcHcCTLJmcNFM1qdXTuYu0KrMbY8c5t09eYw6WY-Txd5HtIvug_-PcX4BeEmwBg</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Chang, E.E.</creator><creator>Chiang, P.C.</creator><creator>Chao, S.H.</creator><creator>Lin, Y.L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TV</scope></search><sort><creationdate>20060801</creationdate><title>Relationship between chlorine consumption and chlorination by-products formation for model compounds</title><author>Chang, E.E. ; Chiang, P.C. ; Chao, S.H. ; Lin, Y.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-e893c9a26b6f678463afa6e05b219081ea3ca18c93202ff4b6e9885884b7af9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acetates - chemistry</topic><topic>Applied sciences</topic><topic>Carbon - analysis</topic><topic>Chlorine - analysis</topic><topic>Chlorine - chemistry</topic><topic>Chlorine consumption</topic><topic>Chlorine decay model</topic><topic>Chloroacetic acids (CAA)</topic><topic>Chloroform - chemistry</topic><topic>Disinfectants - analysis</topic><topic>Disinfectants - chemistry</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Exact sciences and technology</topic><topic>Hydroxybenzoates - chemistry</topic><topic>Hydroxybenzoic acid (HBA)</topic><topic>Parabens - chemistry</topic><topic>Phloroglucinol (P)</topic><topic>Phloroglucinol - chemistry</topic><topic>Pollution</topic><topic>Resorcinol (R)</topic><topic>Resorcinols - chemistry</topic><topic>Tichloromethane (TCM)</topic><topic>Water Pollutants, Chemical</topic><topic>Water Purification</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, E.E.</creatorcontrib><creatorcontrib>Chiang, P.C.</creatorcontrib><creatorcontrib>Chao, S.H.</creatorcontrib><creatorcontrib>Lin, Y.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, E.E.</au><au>Chiang, P.C.</au><au>Chao, S.H.</au><au>Lin, Y.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between chlorine consumption and chlorination by-products formation for model compounds</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>64</volume><issue>7</issue><spage>1196</spage><epage>1203</epage><pages>1196-1203</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><coden>CMSHAF</coden><abstract>The objective of this research is to investigate the relationship between chlorine decay and the formations of disinfection by-products (DBP), including trichloromethane (TCM) and chloroacetic acid (CAA) in the presence of four model compounds, i.e., resorcinol, phloroglucinol,
p-hydroxybenzoic acid, and
m-hydroxybenzoic acid. The chlorine degradation in model compounds with OH and/or COOH functional groups were rapid after chlorination. The TCM yields of carboxylic group substituted compounds (3-hydroxybenzoic acid [3-HBA], 4-hydroxybenzoic acid [4-HBA]) were found to be lower than that of the
m-dihydroxy substituted compounds. Phloroglucinol, with one more OH substitution group than resorcinol, tends to form significant amounts of CAA after chlorination. However, it was observed that with the COOH substitution of 3-HBA and 4-HBA tend to exhibit more CAA formation potential than resorcinol. The developed parallel second and first-order reaction model for chlorine demand has been successfully utilized for TCM, CAA and DBP formation modeling. A high correlation between CAA and TCM was observed for the model compounds.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>16412493</pmid><doi>10.1016/j.chemosphere.2005.11.036</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2006-08, Vol.64 (7), p.1196-1203 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_proquest_miscellaneous_20530416 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Acetates - chemistry Applied sciences Carbon - analysis Chlorine - analysis Chlorine - chemistry Chlorine consumption Chlorine decay model Chloroacetic acids (CAA) Chloroform - chemistry Disinfectants - analysis Disinfectants - chemistry Drinking water and swimming-pool water. Desalination Exact sciences and technology Hydroxybenzoates - chemistry Hydroxybenzoic acid (HBA) Parabens - chemistry Phloroglucinol (P) Phloroglucinol - chemistry Pollution Resorcinol (R) Resorcinols - chemistry Tichloromethane (TCM) Water Pollutants, Chemical Water Purification Water treatment and pollution |
title | Relationship between chlorine consumption and chlorination by-products formation for model compounds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20chlorine%20consumption%20and%20chlorination%20by-products%20formation%20for%20model%20compounds&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Chang,%20E.E.&rft.date=2006-08-01&rft.volume=64&rft.issue=7&rft.spage=1196&rft.epage=1203&rft.pages=1196-1203&rft.issn=0045-6535&rft.eissn=1879-1298&rft.coden=CMSHAF&rft_id=info:doi/10.1016/j.chemosphere.2005.11.036&rft_dat=%3Cproquest_cross%3E14781733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14781733&rft_id=info:pmid/16412493&rft_els_id=S0045653505013846&rfr_iscdi=true |