Relationship between chlorine consumption and chlorination by-products formation for model compounds

The objective of this research is to investigate the relationship between chlorine decay and the formations of disinfection by-products (DBP), including trichloromethane (TCM) and chloroacetic acid (CAA) in the presence of four model compounds, i.e., resorcinol, phloroglucinol, p-hydroxybenzoic acid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2006-08, Vol.64 (7), p.1196-1203
Hauptverfasser: Chang, E.E., Chiang, P.C., Chao, S.H., Lin, Y.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1203
container_issue 7
container_start_page 1196
container_title Chemosphere (Oxford)
container_volume 64
creator Chang, E.E.
Chiang, P.C.
Chao, S.H.
Lin, Y.L.
description The objective of this research is to investigate the relationship between chlorine decay and the formations of disinfection by-products (DBP), including trichloromethane (TCM) and chloroacetic acid (CAA) in the presence of four model compounds, i.e., resorcinol, phloroglucinol, p-hydroxybenzoic acid, and m-hydroxybenzoic acid. The chlorine degradation in model compounds with OH and/or COOH functional groups were rapid after chlorination. The TCM yields of carboxylic group substituted compounds (3-hydroxybenzoic acid [3-HBA], 4-hydroxybenzoic acid [4-HBA]) were found to be lower than that of the m-dihydroxy substituted compounds. Phloroglucinol, with one more OH substitution group than resorcinol, tends to form significant amounts of CAA after chlorination. However, it was observed that with the COOH substitution of 3-HBA and 4-HBA tend to exhibit more CAA formation potential than resorcinol. The developed parallel second and first-order reaction model for chlorine demand has been successfully utilized for TCM, CAA and DBP formation modeling. A high correlation between CAA and TCM was observed for the model compounds.
doi_str_mv 10.1016/j.chemosphere.2005.11.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20530416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653505013846</els_id><sourcerecordid>14781733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-e893c9a26b6f678463afa6e05b219081ea3ca18c93202ff4b6e9885884b7af9f3</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhkVISTZpXiG4h_RmV2PJsnQsS9oUAoXSnoUsj1gttuVKdkLevtrulvTWniQ03zca5ifkHdAKKIgP-8rucAxp3mHEqqa0qQAqysQZ2YBsVQm1kudkQylvStGw5pJcpbSnNMuNuiCXIDjUXLEN6b_hYBYfprTzc9Hh8ow4FXY3hOgnLGwurON8AAoz9X8Kv42ieynnGPrVLqlwIY7H13wrxtDjkOVxDuvUp7fkjTNDwpvTeU1-fLr_vn0oH79-_rL9-FhaLtqlRKmYVaYWnXCilVww44xA2nQ1KCoBDbMGpFWsprVzvBOopGyk5F1rnHLsmrw_9s1j_VwxLXr0yeIwmAnDmnRNG0Y5iH-CwFsJLWMZVEfQxpBSRKfn6EcTXzRQfchC7_VfWehDFhpA5yyye3v6ZO1G7F_N0_IzcHcCTLJmcNFM1qdXTuYu0KrMbY8c5t09eYw6WY-Txd5HtIvug_-PcX4BeEmwBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14781733</pqid></control><display><type>article</type><title>Relationship between chlorine consumption and chlorination by-products formation for model compounds</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Chang, E.E. ; Chiang, P.C. ; Chao, S.H. ; Lin, Y.L.</creator><creatorcontrib>Chang, E.E. ; Chiang, P.C. ; Chao, S.H. ; Lin, Y.L.</creatorcontrib><description>The objective of this research is to investigate the relationship between chlorine decay and the formations of disinfection by-products (DBP), including trichloromethane (TCM) and chloroacetic acid (CAA) in the presence of four model compounds, i.e., resorcinol, phloroglucinol, p-hydroxybenzoic acid, and m-hydroxybenzoic acid. The chlorine degradation in model compounds with OH and/or COOH functional groups were rapid after chlorination. The TCM yields of carboxylic group substituted compounds (3-hydroxybenzoic acid [3-HBA], 4-hydroxybenzoic acid [4-HBA]) were found to be lower than that of the m-dihydroxy substituted compounds. Phloroglucinol, with one more OH substitution group than resorcinol, tends to form significant amounts of CAA after chlorination. However, it was observed that with the COOH substitution of 3-HBA and 4-HBA tend to exhibit more CAA formation potential than resorcinol. The developed parallel second and first-order reaction model for chlorine demand has been successfully utilized for TCM, CAA and DBP formation modeling. A high correlation between CAA and TCM was observed for the model compounds.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2005.11.036</identifier><identifier>PMID: 16412493</identifier><identifier>CODEN: CMSHAF</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acetates - chemistry ; Applied sciences ; Carbon - analysis ; Chlorine - analysis ; Chlorine - chemistry ; Chlorine consumption ; Chlorine decay model ; Chloroacetic acids (CAA) ; Chloroform - chemistry ; Disinfectants - analysis ; Disinfectants - chemistry ; Drinking water and swimming-pool water. Desalination ; Exact sciences and technology ; Hydroxybenzoates - chemistry ; Hydroxybenzoic acid (HBA) ; Parabens - chemistry ; Phloroglucinol (P) ; Phloroglucinol - chemistry ; Pollution ; Resorcinol (R) ; Resorcinols - chemistry ; Tichloromethane (TCM) ; Water Pollutants, Chemical ; Water Purification ; Water treatment and pollution</subject><ispartof>Chemosphere (Oxford), 2006-08, Vol.64 (7), p.1196-1203</ispartof><rights>2005 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-e893c9a26b6f678463afa6e05b219081ea3ca18c93202ff4b6e9885884b7af9f3</citedby><cites>FETCH-LOGICAL-c467t-e893c9a26b6f678463afa6e05b219081ea3ca18c93202ff4b6e9885884b7af9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653505013846$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18036179$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16412493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, E.E.</creatorcontrib><creatorcontrib>Chiang, P.C.</creatorcontrib><creatorcontrib>Chao, S.H.</creatorcontrib><creatorcontrib>Lin, Y.L.</creatorcontrib><title>Relationship between chlorine consumption and chlorination by-products formation for model compounds</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>The objective of this research is to investigate the relationship between chlorine decay and the formations of disinfection by-products (DBP), including trichloromethane (TCM) and chloroacetic acid (CAA) in the presence of four model compounds, i.e., resorcinol, phloroglucinol, p-hydroxybenzoic acid, and m-hydroxybenzoic acid. The chlorine degradation in model compounds with OH and/or COOH functional groups were rapid after chlorination. The TCM yields of carboxylic group substituted compounds (3-hydroxybenzoic acid [3-HBA], 4-hydroxybenzoic acid [4-HBA]) were found to be lower than that of the m-dihydroxy substituted compounds. Phloroglucinol, with one more OH substitution group than resorcinol, tends to form significant amounts of CAA after chlorination. However, it was observed that with the COOH substitution of 3-HBA and 4-HBA tend to exhibit more CAA formation potential than resorcinol. The developed parallel second and first-order reaction model for chlorine demand has been successfully utilized for TCM, CAA and DBP formation modeling. A high correlation between CAA and TCM was observed for the model compounds.</description><subject>Acetates - chemistry</subject><subject>Applied sciences</subject><subject>Carbon - analysis</subject><subject>Chlorine - analysis</subject><subject>Chlorine - chemistry</subject><subject>Chlorine consumption</subject><subject>Chlorine decay model</subject><subject>Chloroacetic acids (CAA)</subject><subject>Chloroform - chemistry</subject><subject>Disinfectants - analysis</subject><subject>Disinfectants - chemistry</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Exact sciences and technology</subject><subject>Hydroxybenzoates - chemistry</subject><subject>Hydroxybenzoic acid (HBA)</subject><subject>Parabens - chemistry</subject><subject>Phloroglucinol (P)</subject><subject>Phloroglucinol - chemistry</subject><subject>Pollution</subject><subject>Resorcinol (R)</subject><subject>Resorcinols - chemistry</subject><subject>Tichloromethane (TCM)</subject><subject>Water Pollutants, Chemical</subject><subject>Water Purification</subject><subject>Water treatment and pollution</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFq3DAQhkVISTZpXiG4h_RmV2PJsnQsS9oUAoXSnoUsj1gttuVKdkLevtrulvTWniQ03zca5ifkHdAKKIgP-8rucAxp3mHEqqa0qQAqysQZ2YBsVQm1kudkQylvStGw5pJcpbSnNMuNuiCXIDjUXLEN6b_hYBYfprTzc9Hh8ow4FXY3hOgnLGwurON8AAoz9X8Kv42ieynnGPrVLqlwIY7H13wrxtDjkOVxDuvUp7fkjTNDwpvTeU1-fLr_vn0oH79-_rL9-FhaLtqlRKmYVaYWnXCilVww44xA2nQ1KCoBDbMGpFWsprVzvBOopGyk5F1rnHLsmrw_9s1j_VwxLXr0yeIwmAnDmnRNG0Y5iH-CwFsJLWMZVEfQxpBSRKfn6EcTXzRQfchC7_VfWehDFhpA5yyye3v6ZO1G7F_N0_IzcHcCTLJmcNFM1qdXTuYu0KrMbY8c5t09eYw6WY-Txd5HtIvug_-PcX4BeEmwBg</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Chang, E.E.</creator><creator>Chiang, P.C.</creator><creator>Chao, S.H.</creator><creator>Lin, Y.L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TV</scope></search><sort><creationdate>20060801</creationdate><title>Relationship between chlorine consumption and chlorination by-products formation for model compounds</title><author>Chang, E.E. ; Chiang, P.C. ; Chao, S.H. ; Lin, Y.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-e893c9a26b6f678463afa6e05b219081ea3ca18c93202ff4b6e9885884b7af9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acetates - chemistry</topic><topic>Applied sciences</topic><topic>Carbon - analysis</topic><topic>Chlorine - analysis</topic><topic>Chlorine - chemistry</topic><topic>Chlorine consumption</topic><topic>Chlorine decay model</topic><topic>Chloroacetic acids (CAA)</topic><topic>Chloroform - chemistry</topic><topic>Disinfectants - analysis</topic><topic>Disinfectants - chemistry</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Exact sciences and technology</topic><topic>Hydroxybenzoates - chemistry</topic><topic>Hydroxybenzoic acid (HBA)</topic><topic>Parabens - chemistry</topic><topic>Phloroglucinol (P)</topic><topic>Phloroglucinol - chemistry</topic><topic>Pollution</topic><topic>Resorcinol (R)</topic><topic>Resorcinols - chemistry</topic><topic>Tichloromethane (TCM)</topic><topic>Water Pollutants, Chemical</topic><topic>Water Purification</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, E.E.</creatorcontrib><creatorcontrib>Chiang, P.C.</creatorcontrib><creatorcontrib>Chao, S.H.</creatorcontrib><creatorcontrib>Lin, Y.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, E.E.</au><au>Chiang, P.C.</au><au>Chao, S.H.</au><au>Lin, Y.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between chlorine consumption and chlorination by-products formation for model compounds</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>64</volume><issue>7</issue><spage>1196</spage><epage>1203</epage><pages>1196-1203</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><coden>CMSHAF</coden><abstract>The objective of this research is to investigate the relationship between chlorine decay and the formations of disinfection by-products (DBP), including trichloromethane (TCM) and chloroacetic acid (CAA) in the presence of four model compounds, i.e., resorcinol, phloroglucinol, p-hydroxybenzoic acid, and m-hydroxybenzoic acid. The chlorine degradation in model compounds with OH and/or COOH functional groups were rapid after chlorination. The TCM yields of carboxylic group substituted compounds (3-hydroxybenzoic acid [3-HBA], 4-hydroxybenzoic acid [4-HBA]) were found to be lower than that of the m-dihydroxy substituted compounds. Phloroglucinol, with one more OH substitution group than resorcinol, tends to form significant amounts of CAA after chlorination. However, it was observed that with the COOH substitution of 3-HBA and 4-HBA tend to exhibit more CAA formation potential than resorcinol. The developed parallel second and first-order reaction model for chlorine demand has been successfully utilized for TCM, CAA and DBP formation modeling. A high correlation between CAA and TCM was observed for the model compounds.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>16412493</pmid><doi>10.1016/j.chemosphere.2005.11.036</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2006-08, Vol.64 (7), p.1196-1203
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_20530416
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acetates - chemistry
Applied sciences
Carbon - analysis
Chlorine - analysis
Chlorine - chemistry
Chlorine consumption
Chlorine decay model
Chloroacetic acids (CAA)
Chloroform - chemistry
Disinfectants - analysis
Disinfectants - chemistry
Drinking water and swimming-pool water. Desalination
Exact sciences and technology
Hydroxybenzoates - chemistry
Hydroxybenzoic acid (HBA)
Parabens - chemistry
Phloroglucinol (P)
Phloroglucinol - chemistry
Pollution
Resorcinol (R)
Resorcinols - chemistry
Tichloromethane (TCM)
Water Pollutants, Chemical
Water Purification
Water treatment and pollution
title Relationship between chlorine consumption and chlorination by-products formation for model compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20chlorine%20consumption%20and%20chlorination%20by-products%20formation%20for%20model%20compounds&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Chang,%20E.E.&rft.date=2006-08-01&rft.volume=64&rft.issue=7&rft.spage=1196&rft.epage=1203&rft.pages=1196-1203&rft.issn=0045-6535&rft.eissn=1879-1298&rft.coden=CMSHAF&rft_id=info:doi/10.1016/j.chemosphere.2005.11.036&rft_dat=%3Cproquest_cross%3E14781733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14781733&rft_id=info:pmid/16412493&rft_els_id=S0045653505013846&rfr_iscdi=true