Discovery and Identification of Small Molecules as Methuosis Inducers with in Vivo Antitumor Activities

Methuosis is a novel nonapoptotic mode of cell death characterized by vacuole accumulation in the cytoplasm. In this article, we describe a series of azaindole-based compounds that cause vacuolization in MDA-MB-231 cells. The most potent vacuole inducer, compound 13 (compound 13), displayed differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2018-06, Vol.61 (12), p.5424-5434
Hauptverfasser: Huang, Wei, Sun, Xihuan, Li, Yunzhan, He, Zhixiang, Li, Li, Deng, Zhou, Huang, Xiaoxing, Han, Shang, Zhang, Ting, Zhong, Jiaji, Wang, Zheng, Xu, Qingyan, Zhang, Jianming, Deng, Xianming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methuosis is a novel nonapoptotic mode of cell death characterized by vacuole accumulation in the cytoplasm. In this article, we describe a series of azaindole-based compounds that cause vacuolization in MDA-MB-231 cells. The most potent vacuole inducer, compound 13 (compound 13), displayed differential cytotoxicities against a broad panel of cancer cell lines, such as MDA-MB-231, A375, HCT116, and MCF-7, but it did not inhibit the growth of the nontumorigenic epithelial cell line MCF-10A. A mechanism study confirmed that the cell death was caused by inducing methuosis. Furthermore, compound 13 exhibited substantial pharmacological efficacy in the suppression of tumor growth in a xenograft mouse model of MDA-MB-231 cells without apparent side effects, which makes this compound the first example of a methuosis inducer with potent in vivo efficacy. These results demonstrate that methuosis inducers might serve as novel therapeutics for the treatment of cancer.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.8b00753