Ab initio intermolecular potential energy surface for the CO2—N2 system and related thermophysical properties

A four-dimensional potential energy surface (PES) for the interaction between a rigid carbon dioxide molecule and a rigid nitrogen molecule was constructed based on quantum-chemical ab initio calculations up to the coupled-cluster level with single, double, and perturbative triple excitations. Inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2018-06, Vol.148 (21), p.214306-214306
Hauptverfasser: Crusius, Johann-Philipp, Hellmann, Robert, Castro-Palacio, Juan Carlos, Vesovic, Velisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214306
container_issue 21
container_start_page 214306
container_title The Journal of chemical physics
container_volume 148
creator Crusius, Johann-Philipp
Hellmann, Robert
Castro-Palacio, Juan Carlos
Vesovic, Velisa
description A four-dimensional potential energy surface (PES) for the interaction between a rigid carbon dioxide molecule and a rigid nitrogen molecule was constructed based on quantum-chemical ab initio calculations up to the coupled-cluster level with single, double, and perturbative triple excitations. Interaction energies for a total of 1893 points on the PES were calculated using the counterpoise-corrected supermolecular approach and basis sets of up to quintuple-zeta quality with bond functions. The interaction energies were extrapolated to the complete basis set limit, and an analytical site–site potential function with seven sites for carbon dioxide and five sites for nitrogen was fitted to the interaction energies. The CO2—N2 cross second virial coefficient as well as the dilute gas shear viscosity, thermal conductivity, and binary diffusion coefficient of CO2—N2 mixtures were calculated for temperatures up to 2000 K to validate the PES and to provide reliable reference values for these important properties. The calculated values are in very good agreement with the best experimental data.
doi_str_mv 10.1063/1.5034347
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2052806618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2052806618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2757-1b069fb36f0df607853c80282d14163e65ca636a15f60532a4500c5e1cfa75a73</originalsourceid><addsrcrecordid>eNp90L9OwzAQBnALgUQpDLyBJRZASjnbsZ2OqOKfhGCBOXLdC7hK42A7QzYegifkSXBVJgamG-6n704fIacMZgyUuGIzCaIUpd4jEwbVvNBqDvtkAsBZMVegDslRjGsAYJqXE-Kvl9R1LjmfR8Kw8S3aoTWB9j5hl5xpKXYY3kYah9AYi7TxgaZ3pItn_v359cRpHGPCDTXdigZsTcLVdp-j-vcxOpsT-uB7DMlhPCYHjWkjnvzOKXm9vXlZ3BePz3cPi-vHwnItdcGWoObNUqgGVo0CXUlhK-AVX7GSKYFKWqOEMkzmrRTclBLASmS2MVoaLabkfJebT38MGFO9cdFi25oO_RBrDpJXoBSrMj37Q9d-CF3-LquqEoppuVUXO2WDjzFgU_fBbUwYawb1tvqa1b_VZ3u5s9G6ZHK33T_4B1bmg4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088361758</pqid></control><display><type>article</type><title>Ab initio intermolecular potential energy surface for the CO2—N2 system and related thermophysical properties</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Crusius, Johann-Philipp ; Hellmann, Robert ; Castro-Palacio, Juan Carlos ; Vesovic, Velisa</creator><creatorcontrib>Crusius, Johann-Philipp ; Hellmann, Robert ; Castro-Palacio, Juan Carlos ; Vesovic, Velisa</creatorcontrib><description>A four-dimensional potential energy surface (PES) for the interaction between a rigid carbon dioxide molecule and a rigid nitrogen molecule was constructed based on quantum-chemical ab initio calculations up to the coupled-cluster level with single, double, and perturbative triple excitations. Interaction energies for a total of 1893 points on the PES were calculated using the counterpoise-corrected supermolecular approach and basis sets of up to quintuple-zeta quality with bond functions. The interaction energies were extrapolated to the complete basis set limit, and an analytical site–site potential function with seven sites for carbon dioxide and five sites for nitrogen was fitted to the interaction energies. The CO2—N2 cross second virial coefficient as well as the dilute gas shear viscosity, thermal conductivity, and binary diffusion coefficient of CO2—N2 mixtures were calculated for temperatures up to 2000 K to validate the PES and to provide reliable reference values for these important properties. The calculated values are in very good agreement with the best experimental data.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5034347</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carbon dioxide ; Diffusion coefficient ; Dilution ; Mathematical analysis ; Organic chemistry ; Physics ; Potential energy ; Quantum chemistry ; Shear viscosity ; Thermal conductivity ; Thermophysical properties ; Virial coefficients</subject><ispartof>The Journal of chemical physics, 2018-06, Vol.148 (21), p.214306-214306</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2757-1b069fb36f0df607853c80282d14163e65ca636a15f60532a4500c5e1cfa75a73</citedby><cites>FETCH-LOGICAL-c2757-1b069fb36f0df607853c80282d14163e65ca636a15f60532a4500c5e1cfa75a73</cites><orcidid>0000-0001-5480-1311 ; 0000-0003-3464-7745 ; 0000-0003-3121-6827</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5034347$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Crusius, Johann-Philipp</creatorcontrib><creatorcontrib>Hellmann, Robert</creatorcontrib><creatorcontrib>Castro-Palacio, Juan Carlos</creatorcontrib><creatorcontrib>Vesovic, Velisa</creatorcontrib><title>Ab initio intermolecular potential energy surface for the CO2—N2 system and related thermophysical properties</title><title>The Journal of chemical physics</title><description>A four-dimensional potential energy surface (PES) for the interaction between a rigid carbon dioxide molecule and a rigid nitrogen molecule was constructed based on quantum-chemical ab initio calculations up to the coupled-cluster level with single, double, and perturbative triple excitations. Interaction energies for a total of 1893 points on the PES were calculated using the counterpoise-corrected supermolecular approach and basis sets of up to quintuple-zeta quality with bond functions. The interaction energies were extrapolated to the complete basis set limit, and an analytical site–site potential function with seven sites for carbon dioxide and five sites for nitrogen was fitted to the interaction energies. The CO2—N2 cross second virial coefficient as well as the dilute gas shear viscosity, thermal conductivity, and binary diffusion coefficient of CO2—N2 mixtures were calculated for temperatures up to 2000 K to validate the PES and to provide reliable reference values for these important properties. The calculated values are in very good agreement with the best experimental data.</description><subject>Carbon dioxide</subject><subject>Diffusion coefficient</subject><subject>Dilution</subject><subject>Mathematical analysis</subject><subject>Organic chemistry</subject><subject>Physics</subject><subject>Potential energy</subject><subject>Quantum chemistry</subject><subject>Shear viscosity</subject><subject>Thermal conductivity</subject><subject>Thermophysical properties</subject><subject>Virial coefficients</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90L9OwzAQBnALgUQpDLyBJRZASjnbsZ2OqOKfhGCBOXLdC7hK42A7QzYegifkSXBVJgamG-6n704fIacMZgyUuGIzCaIUpd4jEwbVvNBqDvtkAsBZMVegDslRjGsAYJqXE-Kvl9R1LjmfR8Kw8S3aoTWB9j5hl5xpKXYY3kYah9AYi7TxgaZ3pItn_v359cRpHGPCDTXdigZsTcLVdp-j-vcxOpsT-uB7DMlhPCYHjWkjnvzOKXm9vXlZ3BePz3cPi-vHwnItdcGWoObNUqgGVo0CXUlhK-AVX7GSKYFKWqOEMkzmrRTclBLASmS2MVoaLabkfJebT38MGFO9cdFi25oO_RBrDpJXoBSrMj37Q9d-CF3-LquqEoppuVUXO2WDjzFgU_fBbUwYawb1tvqa1b_VZ3u5s9G6ZHK33T_4B1bmg4Q</recordid><startdate>20180607</startdate><enddate>20180607</enddate><creator>Crusius, Johann-Philipp</creator><creator>Hellmann, Robert</creator><creator>Castro-Palacio, Juan Carlos</creator><creator>Vesovic, Velisa</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5480-1311</orcidid><orcidid>https://orcid.org/0000-0003-3464-7745</orcidid><orcidid>https://orcid.org/0000-0003-3121-6827</orcidid></search><sort><creationdate>20180607</creationdate><title>Ab initio intermolecular potential energy surface for the CO2—N2 system and related thermophysical properties</title><author>Crusius, Johann-Philipp ; Hellmann, Robert ; Castro-Palacio, Juan Carlos ; Vesovic, Velisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2757-1b069fb36f0df607853c80282d14163e65ca636a15f60532a4500c5e1cfa75a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon dioxide</topic><topic>Diffusion coefficient</topic><topic>Dilution</topic><topic>Mathematical analysis</topic><topic>Organic chemistry</topic><topic>Physics</topic><topic>Potential energy</topic><topic>Quantum chemistry</topic><topic>Shear viscosity</topic><topic>Thermal conductivity</topic><topic>Thermophysical properties</topic><topic>Virial coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crusius, Johann-Philipp</creatorcontrib><creatorcontrib>Hellmann, Robert</creatorcontrib><creatorcontrib>Castro-Palacio, Juan Carlos</creatorcontrib><creatorcontrib>Vesovic, Velisa</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crusius, Johann-Philipp</au><au>Hellmann, Robert</au><au>Castro-Palacio, Juan Carlos</au><au>Vesovic, Velisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio intermolecular potential energy surface for the CO2—N2 system and related thermophysical properties</atitle><jtitle>The Journal of chemical physics</jtitle><date>2018-06-07</date><risdate>2018</risdate><volume>148</volume><issue>21</issue><spage>214306</spage><epage>214306</epage><pages>214306-214306</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>A four-dimensional potential energy surface (PES) for the interaction between a rigid carbon dioxide molecule and a rigid nitrogen molecule was constructed based on quantum-chemical ab initio calculations up to the coupled-cluster level with single, double, and perturbative triple excitations. Interaction energies for a total of 1893 points on the PES were calculated using the counterpoise-corrected supermolecular approach and basis sets of up to quintuple-zeta quality with bond functions. The interaction energies were extrapolated to the complete basis set limit, and an analytical site–site potential function with seven sites for carbon dioxide and five sites for nitrogen was fitted to the interaction energies. The CO2—N2 cross second virial coefficient as well as the dilute gas shear viscosity, thermal conductivity, and binary diffusion coefficient of CO2—N2 mixtures were calculated for temperatures up to 2000 K to validate the PES and to provide reliable reference values for these important properties. The calculated values are in very good agreement with the best experimental data.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5034347</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5480-1311</orcidid><orcidid>https://orcid.org/0000-0003-3464-7745</orcidid><orcidid>https://orcid.org/0000-0003-3121-6827</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2018-06, Vol.148 (21), p.214306-214306
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2052806618
source AIP Journals Complete; Alma/SFX Local Collection
subjects Carbon dioxide
Diffusion coefficient
Dilution
Mathematical analysis
Organic chemistry
Physics
Potential energy
Quantum chemistry
Shear viscosity
Thermal conductivity
Thermophysical properties
Virial coefficients
title Ab initio intermolecular potential energy surface for the CO2—N2 system and related thermophysical properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20intermolecular%20potential%20energy%20surface%20for%20the%20CO2%E2%80%94N2%20system%20and%20related%20thermophysical%20properties&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Crusius,%20Johann-Philipp&rft.date=2018-06-07&rft.volume=148&rft.issue=21&rft.spage=214306&rft.epage=214306&rft.pages=214306-214306&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5034347&rft_dat=%3Cproquest_scita%3E2052806618%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088361758&rft_id=info:pmid/&rfr_iscdi=true