Mitochondrial regulation in skeletal muscle: A role for non‐coding RNAs?

New Findings What is the topic of this review? This article draws evidence from the current literature to support the hypothesis that non‐coding RNA‐mediated gene regulation takes place in the mitochondria. An emphasis is put on skeletal muscle. What advances does it highlight? This review highlight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental physiology 2018-08, Vol.103 (8), p.1132-1144
Hauptverfasser: Silver, Jessica, Wadley, Glenn, Lamon, Séverine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1144
container_issue 8
container_start_page 1132
container_title Experimental physiology
container_volume 103
creator Silver, Jessica
Wadley, Glenn
Lamon, Séverine
description New Findings What is the topic of this review? This article draws evidence from the current literature to support the hypothesis that non‐coding RNA‐mediated gene regulation takes place in the mitochondria. An emphasis is put on skeletal muscle. What advances does it highlight? This review highlights the potential role of microRNAs and long non‐coding RNAs in mitochondrial gene regulation. The discovery of a new level of skeletal muscle mitochondria‐controlled gene regulation presents exciting perspectives for our understanding of skeletal muscle physiology in health and disease. Skeletal muscle is a highly metabolic tissue characterized by high mitochondrial abundance. As such, skeletal muscle homeostasis relies on the tight control of mitochondrial gene expression to ensure efficient mitochondrial function. Mitochondria retain a conserved genome from prokaryotic ancestors, and mitochondrial gene regulation relies on communication between mitochondrial‐ and nuclear‐encoded transcripts. Small and long non‐coding RNAs (ncRNAs) have regulatory roles in the modulation of gene expression. Emerging evidence demonstrates that regulatory ncRNAs, particularly microRNAs (miRNAs) and long ncRNAs (lncRNAs), localize within the mitochondria in diverse physiological and pathological states. These molecules present intriguing possibilities for the regulation of mitochondrial gene expression. Current research suggests that all known miRNAs are encoded by the nuclear genome but can target mitochondrial genes. Initial investigations demonstrate direct interactions between the muscle‐enriched miR‐1 and miR‐181c and mitochondrial transcripts, suggesting advanced roles of miRNAs in mitochondrial gene regulation. This review draws evidence from the current literature to discuss the hypothesis that a level of ncRNA‐mediated gene regulation, in particular miRNA‐mediated gene regulation, takes place in the mitochondria. Although ncRNA‐mediated regulation of the mitochondrial genome is a relatively unexplored field, it presents exciting possibilities to further our understanding of mitochondrial metabolism and human muscle physiology.
doi_str_mv 10.1113/EP086846
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2052800952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2052800952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4507-5e81ef03fdd850ef1aa540ed593fe1551685635f21d3ef0ad2111e207c6b52853</originalsourceid><addsrcrecordid>eNp10N9KwzAUBvAgiptT8Amk4I03nSdN0qbeyBjTKfMPouBd6drT2Zk2M2mR3fkIPqNPYmROQfAqh_Dj45yPkH0KfUopOx7dggwlDzdIl_Iw9jkXj5ukC7GQPoQRdMiOtXMAykDybdIJYikFSOiSy6uy0dmTrnNTpsozOGtV2pS69sras8-osHHfVWszhSfewDNaoVdo49W6_nh7z3Re1jPv7npgT3fJVpEqi3vfb488nI3uh2N_cnN-MRxM_IwLiHyBkmIBrMhztwMWNE0FB8xFzAqkQtBQipCJIqA5cy7NA3ciBhBl4VQEUrAeOVrlLox-adE2SVXaDJVKa9StTQJwDNztgaOHf-hct6Z22zklgcUcGP8NzIy21mCRLExZpWaZUEi--k3W_Tp68B3YTivMf-C6UAf6K_BaKlz-G-SGMQ0YROwTFpiBUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2080394034</pqid></control><display><type>article</type><title>Mitochondrial regulation in skeletal muscle: A role for non‐coding RNAs?</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Silver, Jessica ; Wadley, Glenn ; Lamon, Séverine</creator><creatorcontrib>Silver, Jessica ; Wadley, Glenn ; Lamon, Séverine</creatorcontrib><description>New Findings What is the topic of this review? This article draws evidence from the current literature to support the hypothesis that non‐coding RNA‐mediated gene regulation takes place in the mitochondria. An emphasis is put on skeletal muscle. What advances does it highlight? This review highlights the potential role of microRNAs and long non‐coding RNAs in mitochondrial gene regulation. The discovery of a new level of skeletal muscle mitochondria‐controlled gene regulation presents exciting perspectives for our understanding of skeletal muscle physiology in health and disease. Skeletal muscle is a highly metabolic tissue characterized by high mitochondrial abundance. As such, skeletal muscle homeostasis relies on the tight control of mitochondrial gene expression to ensure efficient mitochondrial function. Mitochondria retain a conserved genome from prokaryotic ancestors, and mitochondrial gene regulation relies on communication between mitochondrial‐ and nuclear‐encoded transcripts. Small and long non‐coding RNAs (ncRNAs) have regulatory roles in the modulation of gene expression. Emerging evidence demonstrates that regulatory ncRNAs, particularly microRNAs (miRNAs) and long ncRNAs (lncRNAs), localize within the mitochondria in diverse physiological and pathological states. These molecules present intriguing possibilities for the regulation of mitochondrial gene expression. Current research suggests that all known miRNAs are encoded by the nuclear genome but can target mitochondrial genes. Initial investigations demonstrate direct interactions between the muscle‐enriched miR‐1 and miR‐181c and mitochondrial transcripts, suggesting advanced roles of miRNAs in mitochondrial gene regulation. This review draws evidence from the current literature to discuss the hypothesis that a level of ncRNA‐mediated gene regulation, in particular miRNA‐mediated gene regulation, takes place in the mitochondria. Although ncRNA‐mediated regulation of the mitochondrial genome is a relatively unexplored field, it presents exciting possibilities to further our understanding of mitochondrial metabolism and human muscle physiology.</description><identifier>ISSN: 0958-0670</identifier><identifier>EISSN: 1469-445X</identifier><identifier>DOI: 10.1113/EP086846</identifier><identifier>PMID: 29885080</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Gene expression ; Gene Expression Regulation ; Gene regulation ; Genomes ; Homeostasis ; Humans ; miRNA ; Mitochondria ; Mitochondria, Muscle - metabolism ; Mitochondrial DNA ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Non-coding RNA ; RNA, Untranslated - metabolism ; Skeletal muscle</subject><ispartof>Experimental physiology, 2018-08, Vol.103 (8), p.1132-1144</ispartof><rights>2018 The Authors. Experimental Physiology © 2018 The Physiological Society</rights><rights>2018 The Authors. Experimental Physiology © 2018 The Physiological Society.</rights><rights>2018 The Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4507-5e81ef03fdd850ef1aa540ed593fe1551685635f21d3ef0ad2111e207c6b52853</citedby><cites>FETCH-LOGICAL-c4507-5e81ef03fdd850ef1aa540ed593fe1551685635f21d3ef0ad2111e207c6b52853</cites><orcidid>0000-0002-3271-6551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1113%2FEP086846$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1113%2FEP086846$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29885080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silver, Jessica</creatorcontrib><creatorcontrib>Wadley, Glenn</creatorcontrib><creatorcontrib>Lamon, Séverine</creatorcontrib><title>Mitochondrial regulation in skeletal muscle: A role for non‐coding RNAs?</title><title>Experimental physiology</title><addtitle>Exp Physiol</addtitle><description>New Findings What is the topic of this review? This article draws evidence from the current literature to support the hypothesis that non‐coding RNA‐mediated gene regulation takes place in the mitochondria. An emphasis is put on skeletal muscle. What advances does it highlight? This review highlights the potential role of microRNAs and long non‐coding RNAs in mitochondrial gene regulation. The discovery of a new level of skeletal muscle mitochondria‐controlled gene regulation presents exciting perspectives for our understanding of skeletal muscle physiology in health and disease. Skeletal muscle is a highly metabolic tissue characterized by high mitochondrial abundance. As such, skeletal muscle homeostasis relies on the tight control of mitochondrial gene expression to ensure efficient mitochondrial function. Mitochondria retain a conserved genome from prokaryotic ancestors, and mitochondrial gene regulation relies on communication between mitochondrial‐ and nuclear‐encoded transcripts. Small and long non‐coding RNAs (ncRNAs) have regulatory roles in the modulation of gene expression. Emerging evidence demonstrates that regulatory ncRNAs, particularly microRNAs (miRNAs) and long ncRNAs (lncRNAs), localize within the mitochondria in diverse physiological and pathological states. These molecules present intriguing possibilities for the regulation of mitochondrial gene expression. Current research suggests that all known miRNAs are encoded by the nuclear genome but can target mitochondrial genes. Initial investigations demonstrate direct interactions between the muscle‐enriched miR‐1 and miR‐181c and mitochondrial transcripts, suggesting advanced roles of miRNAs in mitochondrial gene regulation. This review draws evidence from the current literature to discuss the hypothesis that a level of ncRNA‐mediated gene regulation, in particular miRNA‐mediated gene regulation, takes place in the mitochondria. Although ncRNA‐mediated regulation of the mitochondrial genome is a relatively unexplored field, it presents exciting possibilities to further our understanding of mitochondrial metabolism and human muscle physiology.</description><subject>Animals</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene regulation</subject><subject>Genomes</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>miRNA</subject><subject>Mitochondria</subject><subject>Mitochondria, Muscle - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Non-coding RNA</subject><subject>RNA, Untranslated - metabolism</subject><subject>Skeletal muscle</subject><issn>0958-0670</issn><issn>1469-445X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10N9KwzAUBvAgiptT8Amk4I03nSdN0qbeyBjTKfMPouBd6drT2Zk2M2mR3fkIPqNPYmROQfAqh_Dj45yPkH0KfUopOx7dggwlDzdIl_Iw9jkXj5ukC7GQPoQRdMiOtXMAykDybdIJYikFSOiSy6uy0dmTrnNTpsozOGtV2pS69sras8-osHHfVWszhSfewDNaoVdo49W6_nh7z3Re1jPv7npgT3fJVpEqi3vfb488nI3uh2N_cnN-MRxM_IwLiHyBkmIBrMhztwMWNE0FB8xFzAqkQtBQipCJIqA5cy7NA3ciBhBl4VQEUrAeOVrlLox-adE2SVXaDJVKa9StTQJwDNztgaOHf-hct6Z22zklgcUcGP8NzIy21mCRLExZpWaZUEi--k3W_Tp68B3YTivMf-C6UAf6K_BaKlz-G-SGMQ0YROwTFpiBUQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Silver, Jessica</creator><creator>Wadley, Glenn</creator><creator>Lamon, Séverine</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3271-6551</orcidid></search><sort><creationdate>20180801</creationdate><title>Mitochondrial regulation in skeletal muscle: A role for non‐coding RNAs?</title><author>Silver, Jessica ; Wadley, Glenn ; Lamon, Séverine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4507-5e81ef03fdd850ef1aa540ed593fe1551685635f21d3ef0ad2111e207c6b52853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene regulation</topic><topic>Genomes</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>miRNA</topic><topic>Mitochondria</topic><topic>Mitochondria, Muscle - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Non-coding RNA</topic><topic>RNA, Untranslated - metabolism</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silver, Jessica</creatorcontrib><creatorcontrib>Wadley, Glenn</creatorcontrib><creatorcontrib>Lamon, Séverine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silver, Jessica</au><au>Wadley, Glenn</au><au>Lamon, Séverine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial regulation in skeletal muscle: A role for non‐coding RNAs?</atitle><jtitle>Experimental physiology</jtitle><addtitle>Exp Physiol</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>103</volume><issue>8</issue><spage>1132</spage><epage>1144</epage><pages>1132-1144</pages><issn>0958-0670</issn><eissn>1469-445X</eissn><abstract>New Findings What is the topic of this review? This article draws evidence from the current literature to support the hypothesis that non‐coding RNA‐mediated gene regulation takes place in the mitochondria. An emphasis is put on skeletal muscle. What advances does it highlight? This review highlights the potential role of microRNAs and long non‐coding RNAs in mitochondrial gene regulation. The discovery of a new level of skeletal muscle mitochondria‐controlled gene regulation presents exciting perspectives for our understanding of skeletal muscle physiology in health and disease. Skeletal muscle is a highly metabolic tissue characterized by high mitochondrial abundance. As such, skeletal muscle homeostasis relies on the tight control of mitochondrial gene expression to ensure efficient mitochondrial function. Mitochondria retain a conserved genome from prokaryotic ancestors, and mitochondrial gene regulation relies on communication between mitochondrial‐ and nuclear‐encoded transcripts. Small and long non‐coding RNAs (ncRNAs) have regulatory roles in the modulation of gene expression. Emerging evidence demonstrates that regulatory ncRNAs, particularly microRNAs (miRNAs) and long ncRNAs (lncRNAs), localize within the mitochondria in diverse physiological and pathological states. These molecules present intriguing possibilities for the regulation of mitochondrial gene expression. Current research suggests that all known miRNAs are encoded by the nuclear genome but can target mitochondrial genes. Initial investigations demonstrate direct interactions between the muscle‐enriched miR‐1 and miR‐181c and mitochondrial transcripts, suggesting advanced roles of miRNAs in mitochondrial gene regulation. This review draws evidence from the current literature to discuss the hypothesis that a level of ncRNA‐mediated gene regulation, in particular miRNA‐mediated gene regulation, takes place in the mitochondria. Although ncRNA‐mediated regulation of the mitochondrial genome is a relatively unexplored field, it presents exciting possibilities to further our understanding of mitochondrial metabolism and human muscle physiology.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29885080</pmid><doi>10.1113/EP086846</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3271-6551</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0958-0670
ispartof Experimental physiology, 2018-08, Vol.103 (8), p.1132-1144
issn 0958-0670
1469-445X
language eng
recordid cdi_proquest_miscellaneous_2052800952
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Animals
Gene expression
Gene Expression Regulation
Gene regulation
Genomes
Homeostasis
Humans
miRNA
Mitochondria
Mitochondria, Muscle - metabolism
Mitochondrial DNA
Muscle, Skeletal - metabolism
Musculoskeletal system
Non-coding RNA
RNA, Untranslated - metabolism
Skeletal muscle
title Mitochondrial regulation in skeletal muscle: A role for non‐coding RNAs?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20regulation%20in%20skeletal%20muscle:%20A%20role%20for%20non%E2%80%90coding%20RNAs?&rft.jtitle=Experimental%20physiology&rft.au=Silver,%20Jessica&rft.date=2018-08-01&rft.volume=103&rft.issue=8&rft.spage=1132&rft.epage=1144&rft.pages=1132-1144&rft.issn=0958-0670&rft.eissn=1469-445X&rft_id=info:doi/10.1113/EP086846&rft_dat=%3Cproquest_cross%3E2052800952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2080394034&rft_id=info:pmid/29885080&rfr_iscdi=true