Typical versus Atypical Absence Seizures: Network Mechanisms of the Spread of Paroxysms

Purpose: Typical absence seizures differ from atypical absence seizures in terms of semiology, EEG morphology, network circuitry, and cognitive outcome, yet have the same pharmacological profile. We have compared typical to atypical absence seizures, in terms of the recruitment of different brain ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epilepsia (Copenhagen) 2007-08, Vol.48 (8), p.1585-1593
Hauptverfasser: Velazquez, Jose L. Perez, Huo, Jeanne Zhen, Dominguez, L. Garcia, Leshchenko, Yevgen, Snead III, O. Carter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1593
container_issue 8
container_start_page 1585
container_title Epilepsia (Copenhagen)
container_volume 48
creator Velazquez, Jose L. Perez
Huo, Jeanne Zhen
Dominguez, L. Garcia
Leshchenko, Yevgen
Snead III, O. Carter
description Purpose: Typical absence seizures differ from atypical absence seizures in terms of semiology, EEG morphology, network circuitry, and cognitive outcome, yet have the same pharmacological profile. We have compared typical to atypical absence seizures, in terms of the recruitment of different brain areas. Our initial question was whether brain areas that do not display apparent paroxysmal discharges during typical absence seizures, are affected during the ictal event in terms of synchronized activity, by other, distant areas where seizure activity is evident. Because the spike‐and‐wave paroxysms in atypical absence seizures invade limbic areas, we then asked whether an alteration in inhibitory processes in hippocampi may be related to the spread seizure activity beyond thalamocortical networks, in atypical seizures. Methods: We used two models of absence seizures in rats: one of typical and the other of atypical absence seizures. We estimated phase synchronization, and evaluated inhibitory transmission using a paired‐pulse paradigm. Results: In typical absence seizures, we observed an increase in synchronization between hippocampal recordings when spike‐and‐wave discharges occurred in the cortex and thalamus. This indicates that seizure activity in the thalamocortical circuitry enhances the propensity of limbic areas to synchronize, but is not sufficient to drive hippocampal circuitry into a full paroxysmal discharge. Lower paired‐pulse depression was then found in hippocampus of rats that displayed atypical absence seizures. Conclusions: These observations suggest that circuitries in brain areas that do not display apparent seizure activity become synchronized as seizures occur within thalamocortical circuitry, and that a weakened hippocampal inhibition may predispose to develop synchronization into full paroxysms during atypical absence seizures.
doi_str_mv 10.1111/j.1528-1167.2007.01120.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20527185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20527185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4780-7517c5493a87bef726160a8c4e64f53488be268e94aac7d62d5f26f778ef1d3f3</originalsourceid><addsrcrecordid>eNqNkFFPwjAQgBujEUT_gtmLvm22XbcWEx8IQSVBJRHjY1O6axgOhi0T8NfbySKv3kvvct9dLx9CAcER8XEzj0hCRUhIyiOKMY8wIRRH2yPU_mscozbGJA67icAtdObcHHsy5fEpahHOBOMJaaP3yW6Va1UEX2Bd5YLeuql7UwdLDcEr5N-VBXcbPMN6U9qP4An0TC1zt3BBaYL1zDMrCyqrq7Gy5XbnW-foxKjCwUXzdtDb_WDSfwxHLw_Dfm8UasYFDv0NXCesGyvBp2A4TUmKldAMUmaSmAkxBZoK6DKlNM9SmiWGpoZzAYZksYk76Hq_d2XLzwrcWi5yp6Eo1BLKykmKE8qJSDwo9qC2pXMWjFzZfKHsThIsa6lyLmt3snYna6nyV6rc-tHL5o9quoDsMNhY9MBVAyjn3Rmrljp3B050BWdUeO5uz23yAnb_PkAOxsM6i38An9KSPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20527185</pqid></control><display><type>article</type><title>Typical versus Atypical Absence Seizures: Network Mechanisms of the Spread of Paroxysms</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Velazquez, Jose L. Perez ; Huo, Jeanne Zhen ; Dominguez, L. Garcia ; Leshchenko, Yevgen ; Snead III, O. Carter</creator><creatorcontrib>Velazquez, Jose L. Perez ; Huo, Jeanne Zhen ; Dominguez, L. Garcia ; Leshchenko, Yevgen ; Snead III, O. Carter</creatorcontrib><description>Purpose: Typical absence seizures differ from atypical absence seizures in terms of semiology, EEG morphology, network circuitry, and cognitive outcome, yet have the same pharmacological profile. We have compared typical to atypical absence seizures, in terms of the recruitment of different brain areas. Our initial question was whether brain areas that do not display apparent paroxysmal discharges during typical absence seizures, are affected during the ictal event in terms of synchronized activity, by other, distant areas where seizure activity is evident. Because the spike‐and‐wave paroxysms in atypical absence seizures invade limbic areas, we then asked whether an alteration in inhibitory processes in hippocampi may be related to the spread seizure activity beyond thalamocortical networks, in atypical seizures. Methods: We used two models of absence seizures in rats: one of typical and the other of atypical absence seizures. We estimated phase synchronization, and evaluated inhibitory transmission using a paired‐pulse paradigm. Results: In typical absence seizures, we observed an increase in synchronization between hippocampal recordings when spike‐and‐wave discharges occurred in the cortex and thalamus. This indicates that seizure activity in the thalamocortical circuitry enhances the propensity of limbic areas to synchronize, but is not sufficient to drive hippocampal circuitry into a full paroxysmal discharge. Lower paired‐pulse depression was then found in hippocampus of rats that displayed atypical absence seizures. Conclusions: These observations suggest that circuitries in brain areas that do not display apparent seizure activity become synchronized as seizures occur within thalamocortical circuitry, and that a weakened hippocampal inhibition may predispose to develop synchronization into full paroxysms during atypical absence seizures.</description><identifier>ISSN: 0013-9580</identifier><identifier>EISSN: 1528-1167</identifier><identifier>DOI: 10.1111/j.1528-1167.2007.01120.x</identifier><identifier>PMID: 17484751</identifier><identifier>CODEN: EPILAK</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>4-Butyrolactone - pharmacology ; Action Potentials - physiology ; Animals ; Biological and medical sciences ; Cerebral Cortex - drug effects ; Cerebral Cortex - physiopathology ; Cortical Spreading Depression - physiology ; Cortical Synchronization - statistics &amp; numerical data ; Disease Models, Animal ; Diseases of the nervous system ; Electrodes, Implanted ; Electrodiagnosis. Electric activity recording ; Electroencephalography - statistics &amp; numerical data ; Epilepsy ; Epilepsy, Absence - chemically induced ; Epilepsy, Absence - classification ; Epilepsy, Absence - physiopathology ; Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy ; Hippocampus ; Hippocampus - drug effects ; Hippocampus - physiopathology ; In vivo recordings ; Inhibition ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Models, Neurological ; Nervous system ; Nervous system (semeiology, syndromes) ; Neural Inhibition - physiology ; Neural Pathways - physiopathology ; Neurology ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Rats ; Rats, Long-Evans ; Recruitment, Neurophysiological - physiology ; Synaptic Transmission - physiology ; Synchrony ; Thalamus - physiopathology ; trans-1,4-Bis(2-chlorobenzaminomethyl)cyclohexane Dihydrochloride - pharmacology</subject><ispartof>Epilepsia (Copenhagen), 2007-08, Vol.48 (8), p.1585-1593</ispartof><rights>2007 International League Against Epilepsy</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4780-7517c5493a87bef726160a8c4e64f53488be268e94aac7d62d5f26f778ef1d3f3</citedby><cites>FETCH-LOGICAL-c4780-7517c5493a87bef726160a8c4e64f53488be268e94aac7d62d5f26f778ef1d3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1528-1167.2007.01120.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1528-1167.2007.01120.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18987428$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17484751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Velazquez, Jose L. Perez</creatorcontrib><creatorcontrib>Huo, Jeanne Zhen</creatorcontrib><creatorcontrib>Dominguez, L. Garcia</creatorcontrib><creatorcontrib>Leshchenko, Yevgen</creatorcontrib><creatorcontrib>Snead III, O. Carter</creatorcontrib><title>Typical versus Atypical Absence Seizures: Network Mechanisms of the Spread of Paroxysms</title><title>Epilepsia (Copenhagen)</title><addtitle>Epilepsia</addtitle><description>Purpose: Typical absence seizures differ from atypical absence seizures in terms of semiology, EEG morphology, network circuitry, and cognitive outcome, yet have the same pharmacological profile. We have compared typical to atypical absence seizures, in terms of the recruitment of different brain areas. Our initial question was whether brain areas that do not display apparent paroxysmal discharges during typical absence seizures, are affected during the ictal event in terms of synchronized activity, by other, distant areas where seizure activity is evident. Because the spike‐and‐wave paroxysms in atypical absence seizures invade limbic areas, we then asked whether an alteration in inhibitory processes in hippocampi may be related to the spread seizure activity beyond thalamocortical networks, in atypical seizures. Methods: We used two models of absence seizures in rats: one of typical and the other of atypical absence seizures. We estimated phase synchronization, and evaluated inhibitory transmission using a paired‐pulse paradigm. Results: In typical absence seizures, we observed an increase in synchronization between hippocampal recordings when spike‐and‐wave discharges occurred in the cortex and thalamus. This indicates that seizure activity in the thalamocortical circuitry enhances the propensity of limbic areas to synchronize, but is not sufficient to drive hippocampal circuitry into a full paroxysmal discharge. Lower paired‐pulse depression was then found in hippocampus of rats that displayed atypical absence seizures. Conclusions: These observations suggest that circuitries in brain areas that do not display apparent seizure activity become synchronized as seizures occur within thalamocortical circuitry, and that a weakened hippocampal inhibition may predispose to develop synchronization into full paroxysms during atypical absence seizures.</description><subject>4-Butyrolactone - pharmacology</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cerebral Cortex - drug effects</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Cortical Spreading Depression - physiology</subject><subject>Cortical Synchronization - statistics &amp; numerical data</subject><subject>Disease Models, Animal</subject><subject>Diseases of the nervous system</subject><subject>Electrodes, Implanted</subject><subject>Electrodiagnosis. Electric activity recording</subject><subject>Electroencephalography - statistics &amp; numerical data</subject><subject>Epilepsy</subject><subject>Epilepsy, Absence - chemically induced</subject><subject>Epilepsy, Absence - classification</subject><subject>Epilepsy, Absence - physiopathology</subject><subject>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</subject><subject>Hippocampus</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - physiopathology</subject><subject>In vivo recordings</subject><subject>Inhibition</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Models, Neurological</subject><subject>Nervous system</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Pathways - physiopathology</subject><subject>Neurology</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Recruitment, Neurophysiological - physiology</subject><subject>Synaptic Transmission - physiology</subject><subject>Synchrony</subject><subject>Thalamus - physiopathology</subject><subject>trans-1,4-Bis(2-chlorobenzaminomethyl)cyclohexane Dihydrochloride - pharmacology</subject><issn>0013-9580</issn><issn>1528-1167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkFFPwjAQgBujEUT_gtmLvm22XbcWEx8IQSVBJRHjY1O6axgOhi0T8NfbySKv3kvvct9dLx9CAcER8XEzj0hCRUhIyiOKMY8wIRRH2yPU_mscozbGJA67icAtdObcHHsy5fEpahHOBOMJaaP3yW6Va1UEX2Bd5YLeuql7UwdLDcEr5N-VBXcbPMN6U9qP4An0TC1zt3BBaYL1zDMrCyqrq7Gy5XbnW-foxKjCwUXzdtDb_WDSfwxHLw_Dfm8UasYFDv0NXCesGyvBp2A4TUmKldAMUmaSmAkxBZoK6DKlNM9SmiWGpoZzAYZksYk76Hq_d2XLzwrcWi5yp6Eo1BLKykmKE8qJSDwo9qC2pXMWjFzZfKHsThIsa6lyLmt3snYna6nyV6rc-tHL5o9quoDsMNhY9MBVAyjn3Rmrljp3B050BWdUeO5uz23yAnb_PkAOxsM6i38An9KSPA</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Velazquez, Jose L. Perez</creator><creator>Huo, Jeanne Zhen</creator><creator>Dominguez, L. Garcia</creator><creator>Leshchenko, Yevgen</creator><creator>Snead III, O. Carter</creator><general>Blackwell Publishing Inc</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>200708</creationdate><title>Typical versus Atypical Absence Seizures: Network Mechanisms of the Spread of Paroxysms</title><author>Velazquez, Jose L. Perez ; Huo, Jeanne Zhen ; Dominguez, L. Garcia ; Leshchenko, Yevgen ; Snead III, O. Carter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4780-7517c5493a87bef726160a8c4e64f53488be268e94aac7d62d5f26f778ef1d3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>4-Butyrolactone - pharmacology</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cerebral Cortex - drug effects</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Cortical Spreading Depression - physiology</topic><topic>Cortical Synchronization - statistics &amp; numerical data</topic><topic>Disease Models, Animal</topic><topic>Diseases of the nervous system</topic><topic>Electrodes, Implanted</topic><topic>Electrodiagnosis. Electric activity recording</topic><topic>Electroencephalography - statistics &amp; numerical data</topic><topic>Epilepsy</topic><topic>Epilepsy, Absence - chemically induced</topic><topic>Epilepsy, Absence - classification</topic><topic>Epilepsy, Absence - physiopathology</topic><topic>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</topic><topic>Hippocampus</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - physiopathology</topic><topic>In vivo recordings</topic><topic>Inhibition</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Models, Neurological</topic><topic>Nervous system</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Pathways - physiopathology</topic><topic>Neurology</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Recruitment, Neurophysiological - physiology</topic><topic>Synaptic Transmission - physiology</topic><topic>Synchrony</topic><topic>Thalamus - physiopathology</topic><topic>trans-1,4-Bis(2-chlorobenzaminomethyl)cyclohexane Dihydrochloride - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velazquez, Jose L. Perez</creatorcontrib><creatorcontrib>Huo, Jeanne Zhen</creatorcontrib><creatorcontrib>Dominguez, L. Garcia</creatorcontrib><creatorcontrib>Leshchenko, Yevgen</creatorcontrib><creatorcontrib>Snead III, O. Carter</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Epilepsia (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velazquez, Jose L. Perez</au><au>Huo, Jeanne Zhen</au><au>Dominguez, L. Garcia</au><au>Leshchenko, Yevgen</au><au>Snead III, O. Carter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Typical versus Atypical Absence Seizures: Network Mechanisms of the Spread of Paroxysms</atitle><jtitle>Epilepsia (Copenhagen)</jtitle><addtitle>Epilepsia</addtitle><date>2007-08</date><risdate>2007</risdate><volume>48</volume><issue>8</issue><spage>1585</spage><epage>1593</epage><pages>1585-1593</pages><issn>0013-9580</issn><eissn>1528-1167</eissn><coden>EPILAK</coden><abstract>Purpose: Typical absence seizures differ from atypical absence seizures in terms of semiology, EEG morphology, network circuitry, and cognitive outcome, yet have the same pharmacological profile. We have compared typical to atypical absence seizures, in terms of the recruitment of different brain areas. Our initial question was whether brain areas that do not display apparent paroxysmal discharges during typical absence seizures, are affected during the ictal event in terms of synchronized activity, by other, distant areas where seizure activity is evident. Because the spike‐and‐wave paroxysms in atypical absence seizures invade limbic areas, we then asked whether an alteration in inhibitory processes in hippocampi may be related to the spread seizure activity beyond thalamocortical networks, in atypical seizures. Methods: We used two models of absence seizures in rats: one of typical and the other of atypical absence seizures. We estimated phase synchronization, and evaluated inhibitory transmission using a paired‐pulse paradigm. Results: In typical absence seizures, we observed an increase in synchronization between hippocampal recordings when spike‐and‐wave discharges occurred in the cortex and thalamus. This indicates that seizure activity in the thalamocortical circuitry enhances the propensity of limbic areas to synchronize, but is not sufficient to drive hippocampal circuitry into a full paroxysmal discharge. Lower paired‐pulse depression was then found in hippocampus of rats that displayed atypical absence seizures. Conclusions: These observations suggest that circuitries in brain areas that do not display apparent seizure activity become synchronized as seizures occur within thalamocortical circuitry, and that a weakened hippocampal inhibition may predispose to develop synchronization into full paroxysms during atypical absence seizures.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>17484751</pmid><doi>10.1111/j.1528-1167.2007.01120.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-9580
ispartof Epilepsia (Copenhagen), 2007-08, Vol.48 (8), p.1585-1593
issn 0013-9580
1528-1167
language eng
recordid cdi_proquest_miscellaneous_20527185
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects 4-Butyrolactone - pharmacology
Action Potentials - physiology
Animals
Biological and medical sciences
Cerebral Cortex - drug effects
Cerebral Cortex - physiopathology
Cortical Spreading Depression - physiology
Cortical Synchronization - statistics & numerical data
Disease Models, Animal
Diseases of the nervous system
Electrodes, Implanted
Electrodiagnosis. Electric activity recording
Electroencephalography - statistics & numerical data
Epilepsy
Epilepsy, Absence - chemically induced
Epilepsy, Absence - classification
Epilepsy, Absence - physiopathology
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Hippocampus
Hippocampus - drug effects
Hippocampus - physiopathology
In vivo recordings
Inhibition
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Models, Neurological
Nervous system
Nervous system (semeiology, syndromes)
Neural Inhibition - physiology
Neural Pathways - physiopathology
Neurology
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Rats
Rats, Long-Evans
Recruitment, Neurophysiological - physiology
Synaptic Transmission - physiology
Synchrony
Thalamus - physiopathology
trans-1,4-Bis(2-chlorobenzaminomethyl)cyclohexane Dihydrochloride - pharmacology
title Typical versus Atypical Absence Seizures: Network Mechanisms of the Spread of Paroxysms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Typical%20versus%20Atypical%20Absence%20Seizures:%20Network%20Mechanisms%20of%20the%20Spread%20of%20Paroxysms&rft.jtitle=Epilepsia%20(Copenhagen)&rft.au=Velazquez,%20Jose%20L.%20Perez&rft.date=2007-08&rft.volume=48&rft.issue=8&rft.spage=1585&rft.epage=1593&rft.pages=1585-1593&rft.issn=0013-9580&rft.eissn=1528-1167&rft.coden=EPILAK&rft_id=info:doi/10.1111/j.1528-1167.2007.01120.x&rft_dat=%3Cproquest_cross%3E20527185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20527185&rft_id=info:pmid/17484751&rfr_iscdi=true