Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell
Electricity generation from readily biodegradable organic substrates accompanied by decolorization of azo dye was investigated using a microfiltration membrane air-cathode single-chamber microbial fuel cell (MFC). Batch experiment results showed that accelerated decolorization of active brilliant re...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2009-07, Vol.100 (13), p.3185-3192 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3192 |
---|---|
container_issue | 13 |
container_start_page | 3185 |
container_title | Bioresource technology |
container_volume | 100 |
creator | Sun, Jian Hu, Yong-you Bi, Zhe Cao, Yun-qing |
description | Electricity generation from readily biodegradable organic substrates accompanied by decolorization of azo dye was investigated using a microfiltration membrane air-cathode single-chamber microbial fuel cell (MFC). Batch experiment results showed that accelerated decolorization of active brilliant red X-3B (ABRX3) was achieved in the MFC as compared to traditional anaerobic technology. Biodegradation was the dominant mechanism of the dye removal, and glucose was the optimal co-substrate for ABRX3 decolorization, while acetate was the worst one. Confectionery wastewater (CW) was also shown to be a good co-substrate for ABRX3 decolorization and a cheap fuel source for electricity generation in the MFC. Low resistance was more favorable for dye decolorization than high resistance. Suspended sludge (SS) should be retained in the MFC for accelerated decolorization of ABRX3. Electricity generation was not significantly affected by the ABRX3 at 300
mg/L, while higher concentrations inhibited electricity generation. However, voltage can be recovered to the original level after replacement with anodic medium not containing azo dye. |
doi_str_mv | 10.1016/j.biortech.2009.02.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20526667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096085240900114X</els_id><sourcerecordid>20526667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-adf15e72490ee74f3ab1bc3241b12f6d53e7e6f386b3409933731ff5f06c1e413</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEokPhFYo3sEs4thN7sgNV3KRKLErXluMcz3jkxMVOKk2fgwfGIQGWrCxZ33_R-YviikJFgYp3p6pzIU5ojhUDaCtgFQB7UuzoXvKStVI8LXbQCij3DasvihcpnQCAU8meFxe0ZaKlYr8rft66YfaTHjHMifRogg_RPerJhZEES_RjIP0ZiR57khPRo5miM246kwOOGFdwTm48EE0GZ2Kwzk_b_4BDF7M30S6WRk_H0CNZWI-lOeqhw7hqOqc9sTN6YtD7l8Uzq33CV9t7Wdx9-vj9-kt58-3z1-sPN6VpqJxK3VvaoGR1C4iytlx3tDOc1bSjzIq-4ShRWL4XHa-hbTmXnFrbWBCGYk35ZfF29b2P4ceMaVKDS0uB9RyKQcOEEDKDYgVz1ZQiWnUf3aDjWVFQyx7qpP7soZY9FDCV98jCqy1h7gbs_8m2ATLwZgN0MtrbfC3j0l-O0YYC2y9Gr1fO6qD0IWbm7pYB5TmcSvhNvF8JzBd7cBhVMg5Hg72LeTTVB_e_tr8A0Ui5fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20526667</pqid></control><display><type>article</type><title>Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sun, Jian ; Hu, Yong-you ; Bi, Zhe ; Cao, Yun-qing</creator><creatorcontrib>Sun, Jian ; Hu, Yong-you ; Bi, Zhe ; Cao, Yun-qing</creatorcontrib><description>Electricity generation from readily biodegradable organic substrates accompanied by decolorization of azo dye was investigated using a microfiltration membrane air-cathode single-chamber microbial fuel cell (MFC). Batch experiment results showed that accelerated decolorization of active brilliant red X-3B (ABRX3) was achieved in the MFC as compared to traditional anaerobic technology. Biodegradation was the dominant mechanism of the dye removal, and glucose was the optimal co-substrate for ABRX3 decolorization, while acetate was the worst one. Confectionery wastewater (CW) was also shown to be a good co-substrate for ABRX3 decolorization and a cheap fuel source for electricity generation in the MFC. Low resistance was more favorable for dye decolorization than high resistance. Suspended sludge (SS) should be retained in the MFC for accelerated decolorization of ABRX3. Electricity generation was not significantly affected by the ABRX3 at 300
mg/L, while higher concentrations inhibited electricity generation. However, voltage can be recovered to the original level after replacement with anodic medium not containing azo dye.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2009.02.002</identifier><identifier>PMID: 19269168</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Active brilliant red X-3B ; Air ; Azo Compounds - analysis ; Azo Compounds - chemistry ; azo dyes ; biodegradation ; Bioelectric Energy Sources - microbiology ; bioenergy ; Biofuel production ; Biological and medical sciences ; Bioreactors ; Biotechnology ; Co-substrate ; Conservation of Energy Resources ; Decolorization ; Electricity ; Electricity generation ; Energy ; Filtration ; Fundamental and applied biological sciences. Psychology ; Industrial applications and implications. Economical aspects ; Microbial fuel cell ; microfiltration ; Models, Chemical ; Naphthalenesulfonates - analysis ; Naphthalenesulfonates - chemistry ; renewable energy sources ; Waste Disposal, Fluid - methods ; wastewater treatment ; Water Microbiology ; Water Pollutants, Chemical - isolation & purification ; Water Pollutants, Chemical - metabolism ; Water Purification - methods</subject><ispartof>Bioresource technology, 2009-07, Vol.100 (13), p.3185-3192</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-adf15e72490ee74f3ab1bc3241b12f6d53e7e6f386b3409933731ff5f06c1e413</citedby><cites>FETCH-LOGICAL-c517t-adf15e72490ee74f3ab1bc3241b12f6d53e7e6f386b3409933731ff5f06c1e413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2009.02.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21510282$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19269168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Hu, Yong-you</creatorcontrib><creatorcontrib>Bi, Zhe</creatorcontrib><creatorcontrib>Cao, Yun-qing</creatorcontrib><title>Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>Electricity generation from readily biodegradable organic substrates accompanied by decolorization of azo dye was investigated using a microfiltration membrane air-cathode single-chamber microbial fuel cell (MFC). Batch experiment results showed that accelerated decolorization of active brilliant red X-3B (ABRX3) was achieved in the MFC as compared to traditional anaerobic technology. Biodegradation was the dominant mechanism of the dye removal, and glucose was the optimal co-substrate for ABRX3 decolorization, while acetate was the worst one. Confectionery wastewater (CW) was also shown to be a good co-substrate for ABRX3 decolorization and a cheap fuel source for electricity generation in the MFC. Low resistance was more favorable for dye decolorization than high resistance. Suspended sludge (SS) should be retained in the MFC for accelerated decolorization of ABRX3. Electricity generation was not significantly affected by the ABRX3 at 300
mg/L, while higher concentrations inhibited electricity generation. However, voltage can be recovered to the original level after replacement with anodic medium not containing azo dye.</description><subject>Active brilliant red X-3B</subject><subject>Air</subject><subject>Azo Compounds - analysis</subject><subject>Azo Compounds - chemistry</subject><subject>azo dyes</subject><subject>biodegradation</subject><subject>Bioelectric Energy Sources - microbiology</subject><subject>bioenergy</subject><subject>Biofuel production</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Co-substrate</subject><subject>Conservation of Energy Resources</subject><subject>Decolorization</subject><subject>Electricity</subject><subject>Electricity generation</subject><subject>Energy</subject><subject>Filtration</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Microbial fuel cell</subject><subject>microfiltration</subject><subject>Models, Chemical</subject><subject>Naphthalenesulfonates - analysis</subject><subject>Naphthalenesulfonates - chemistry</subject><subject>renewable energy sources</subject><subject>Waste Disposal, Fluid - methods</subject><subject>wastewater treatment</subject><subject>Water Microbiology</subject><subject>Water Pollutants, Chemical - isolation & purification</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Water Purification - methods</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhiMEokPhFYo3sEs4thN7sgNV3KRKLErXluMcz3jkxMVOKk2fgwfGIQGWrCxZ33_R-YviikJFgYp3p6pzIU5ojhUDaCtgFQB7UuzoXvKStVI8LXbQCij3DasvihcpnQCAU8meFxe0ZaKlYr8rft66YfaTHjHMifRogg_RPerJhZEES_RjIP0ZiR57khPRo5miM246kwOOGFdwTm48EE0GZ2Kwzk_b_4BDF7M30S6WRk_H0CNZWI-lOeqhw7hqOqc9sTN6YtD7l8Uzq33CV9t7Wdx9-vj9-kt58-3z1-sPN6VpqJxK3VvaoGR1C4iytlx3tDOc1bSjzIq-4ShRWL4XHa-hbTmXnFrbWBCGYk35ZfF29b2P4ceMaVKDS0uB9RyKQcOEEDKDYgVz1ZQiWnUf3aDjWVFQyx7qpP7soZY9FDCV98jCqy1h7gbs_8m2ATLwZgN0MtrbfC3j0l-O0YYC2y9Gr1fO6qD0IWbm7pYB5TmcSvhNvF8JzBd7cBhVMg5Hg72LeTTVB_e_tr8A0Ui5fw</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Sun, Jian</creator><creator>Hu, Yong-you</creator><creator>Bi, Zhe</creator><creator>Cao, Yun-qing</creator><general>Elsevier Ltd</general><general>[New York, NY]: Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20090701</creationdate><title>Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell</title><author>Sun, Jian ; Hu, Yong-you ; Bi, Zhe ; Cao, Yun-qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-adf15e72490ee74f3ab1bc3241b12f6d53e7e6f386b3409933731ff5f06c1e413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Active brilliant red X-3B</topic><topic>Air</topic><topic>Azo Compounds - analysis</topic><topic>Azo Compounds - chemistry</topic><topic>azo dyes</topic><topic>biodegradation</topic><topic>Bioelectric Energy Sources - microbiology</topic><topic>bioenergy</topic><topic>Biofuel production</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Co-substrate</topic><topic>Conservation of Energy Resources</topic><topic>Decolorization</topic><topic>Electricity</topic><topic>Electricity generation</topic><topic>Energy</topic><topic>Filtration</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Microbial fuel cell</topic><topic>microfiltration</topic><topic>Models, Chemical</topic><topic>Naphthalenesulfonates - analysis</topic><topic>Naphthalenesulfonates - chemistry</topic><topic>renewable energy sources</topic><topic>Waste Disposal, Fluid - methods</topic><topic>wastewater treatment</topic><topic>Water Microbiology</topic><topic>Water Pollutants, Chemical - isolation & purification</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Water Purification - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Hu, Yong-you</creatorcontrib><creatorcontrib>Bi, Zhe</creatorcontrib><creatorcontrib>Cao, Yun-qing</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jian</au><au>Hu, Yong-you</au><au>Bi, Zhe</au><au>Cao, Yun-qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>100</volume><issue>13</issue><spage>3185</spage><epage>3192</epage><pages>3185-3192</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>Electricity generation from readily biodegradable organic substrates accompanied by decolorization of azo dye was investigated using a microfiltration membrane air-cathode single-chamber microbial fuel cell (MFC). Batch experiment results showed that accelerated decolorization of active brilliant red X-3B (ABRX3) was achieved in the MFC as compared to traditional anaerobic technology. Biodegradation was the dominant mechanism of the dye removal, and glucose was the optimal co-substrate for ABRX3 decolorization, while acetate was the worst one. Confectionery wastewater (CW) was also shown to be a good co-substrate for ABRX3 decolorization and a cheap fuel source for electricity generation in the MFC. Low resistance was more favorable for dye decolorization than high resistance. Suspended sludge (SS) should be retained in the MFC for accelerated decolorization of ABRX3. Electricity generation was not significantly affected by the ABRX3 at 300
mg/L, while higher concentrations inhibited electricity generation. However, voltage can be recovered to the original level after replacement with anodic medium not containing azo dye.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19269168</pmid><doi>10.1016/j.biortech.2009.02.002</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2009-07, Vol.100 (13), p.3185-3192 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_20526667 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Active brilliant red X-3B Air Azo Compounds - analysis Azo Compounds - chemistry azo dyes biodegradation Bioelectric Energy Sources - microbiology bioenergy Biofuel production Biological and medical sciences Bioreactors Biotechnology Co-substrate Conservation of Energy Resources Decolorization Electricity Electricity generation Energy Filtration Fundamental and applied biological sciences. Psychology Industrial applications and implications. Economical aspects Microbial fuel cell microfiltration Models, Chemical Naphthalenesulfonates - analysis Naphthalenesulfonates - chemistry renewable energy sources Waste Disposal, Fluid - methods wastewater treatment Water Microbiology Water Pollutants, Chemical - isolation & purification Water Pollutants, Chemical - metabolism Water Purification - methods |
title | Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20decolorization%20of%20azo%20dye%20and%20bioelectricity%20generation%20using%20a%20microfiltration%20membrane%20air-cathode%20single-chamber%20microbial%20fuel%20cell&rft.jtitle=Bioresource%20technology&rft.au=Sun,%20Jian&rft.date=2009-07-01&rft.volume=100&rft.issue=13&rft.spage=3185&rft.epage=3192&rft.pages=3185-3192&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2009.02.002&rft_dat=%3Cproquest_cross%3E20526667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20526667&rft_id=info:pmid/19269168&rft_els_id=S096085240900114X&rfr_iscdi=true |