Removing nitric oxide from flue gas using iron(II) citrate chelate absorption with microbial regeneration

The addition of metal chelates such as Fe(II)EDTA or Fe(II)Cit to wet flue gas desulfurization systems has been shown to increase the amount of NO x absorption from gas streams containing SO 2. This paper attempts to demonstrate the advantage of not only using Fe(II)Cit chelate to absorb nitrogen ox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2007-04, Vol.67 (8), p.1628-1636
Hauptverfasser: Xu, Xinhua, Chang, Shih Ger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1636
container_issue 8
container_start_page 1628
container_title Chemosphere (Oxford)
container_volume 67
creator Xu, Xinhua
Chang, Shih Ger
description The addition of metal chelates such as Fe(II)EDTA or Fe(II)Cit to wet flue gas desulfurization systems has been shown to increase the amount of NO x absorption from gas streams containing SO 2. This paper attempts to demonstrate the advantage of not only using Fe(II)Cit chelate to absorb nitrogen oxides from flue gas but also the advantage gained from adding microorganisms to the system. Two distinct classes of microorganisms are needed: denitrifying and iron-reducing bacteria. The presence of oxygen in flue gas will affect the absorption efficiency of NO by Fe(II)Cit chelate. The oxidation of Fe(II) can be slowed with the help of bacteria in two ways: bacteria can serve to directly reduce Fe(III) to Fe(II) or they can serve to keep levels of dissolved oxygen in the solution low. As a result, after NO absorption, Fe(II)(Cit)NO will be reduced by denitrifying bacteria to Fe(II)Cit while Fe(III) is reduced by anaerobic bacteria back to Fe(II). Our experiments have shown that the implementation of our protocol allowed for an NO reduction rate constant increase from standard levels of 0.0222–0.100 mM h −1 with inlet NO changed from 250 to 1000 ppm. We have also found that total Fe concentration tends to decrease after prolonged periods of operation due to the loss of some Fe to the formation of Fe(OH) 3 that settles together with the sludge at the bottom of bioreactor tank.
doi_str_mv 10.1016/j.chemosphere.2006.11.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20525602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653506015347</els_id><sourcerecordid>14808195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-1796b51d5f0d94b5b0b7824214b26e42e7f6d14d9bf0a72b86e3588ea73dc5373</originalsourceid><addsrcrecordid>eNqN0U1v1DAQBmALgei28BeQOYDKIWHsxI5zrFZ8rFQJCcHZsp3JrldJvNhJof--Xu1K5dae5uBnxmO_hLxnUDJg8vO-dDscQzrsMGLJAWTJWAlMvCArppq2YLxVL8kKoBaFFJW4IJcp7QFys2hfkwvWcKgrYCvif-ZBd37a0snP0Tsa_vkOaR_DSPthQbo1iS7pCHwM0_Vm84m6LM2MNC8xHKuxKcTD7MNE__p5R0fvYrDeDDTiFifMOJ-9Ia96MyR8e65X5PfXL7_W34vbH98265vbwtWymQvWtNIK1okeura2woJtFK85qy2XWHNsetmxumttD6bhVkmshFJomqpzomqqK_LxNPcQw58F06xHnxwOg5kwLElzEFxI4E9CVitQrBUZtieYn5VSxF4foh9NvNcM9DEQvdf_BaKPgWjGdA4k9747X7LYEbvHznMCGXw4A5OcGfpoJufTo1OSc1Aqu_XJYf67O49RJ-dxctj5iG7WXfDPWOcBanqwHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14808195</pqid></control><display><type>article</type><title>Removing nitric oxide from flue gas using iron(II) citrate chelate absorption with microbial regeneration</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Xinhua ; Chang, Shih Ger</creator><creatorcontrib>Xu, Xinhua ; Chang, Shih Ger</creatorcontrib><description>The addition of metal chelates such as Fe(II)EDTA or Fe(II)Cit to wet flue gas desulfurization systems has been shown to increase the amount of NO x absorption from gas streams containing SO 2. This paper attempts to demonstrate the advantage of not only using Fe(II)Cit chelate to absorb nitrogen oxides from flue gas but also the advantage gained from adding microorganisms to the system. Two distinct classes of microorganisms are needed: denitrifying and iron-reducing bacteria. The presence of oxygen in flue gas will affect the absorption efficiency of NO by Fe(II)Cit chelate. The oxidation of Fe(II) can be slowed with the help of bacteria in two ways: bacteria can serve to directly reduce Fe(III) to Fe(II) or they can serve to keep levels of dissolved oxygen in the solution low. As a result, after NO absorption, Fe(II)(Cit)NO will be reduced by denitrifying bacteria to Fe(II)Cit while Fe(III) is reduced by anaerobic bacteria back to Fe(II). Our experiments have shown that the implementation of our protocol allowed for an NO reduction rate constant increase from standard levels of 0.0222–0.100 mM h −1 with inlet NO changed from 250 to 1000 ppm. We have also found that total Fe concentration tends to decrease after prolonged periods of operation due to the loss of some Fe to the formation of Fe(OH) 3 that settles together with the sludge at the bottom of bioreactor tank.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2006.11.015</identifier><identifier>PMID: 17204301</identifier><identifier>CODEN: CMSHAF</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Absorption ; Air Pollutants - isolation &amp; purification ; Anilides ; Applied sciences ; Atmospheric pollution ; Azo Compounds ; Bacteria - drug effects ; Bacteria - metabolism ; Biodegradation, Environmental ; Biological and medical sciences ; Biological treatment of gaseous effluents ; Biotechnology ; Environment and pollution ; Exact sciences and technology ; Fe(II)Cit ; Ferrous Compounds - chemistry ; Fundamental and applied biological sciences. Psychology ; General processes of purification and dust removal ; Glucose - metabolism ; Industrial applications and implications. Economical aspects ; Iron Chelating Agents - chemistry ; Microbial regeneration ; Nitric oxide ; Nitric Oxide - isolation &amp; purification ; Oxygen - pharmacology ; Pollution ; Prevention and purification methods ; Sewage - microbiology</subject><ispartof>Chemosphere (Oxford), 2007-04, Vol.67 (8), p.1628-1636</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-1796b51d5f0d94b5b0b7824214b26e42e7f6d14d9bf0a72b86e3588ea73dc5373</citedby><cites>FETCH-LOGICAL-c467t-1796b51d5f0d94b5b0b7824214b26e42e7f6d14d9bf0a72b86e3588ea73dc5373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2006.11.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18622088$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17204301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xinhua</creatorcontrib><creatorcontrib>Chang, Shih Ger</creatorcontrib><title>Removing nitric oxide from flue gas using iron(II) citrate chelate absorption with microbial regeneration</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>The addition of metal chelates such as Fe(II)EDTA or Fe(II)Cit to wet flue gas desulfurization systems has been shown to increase the amount of NO x absorption from gas streams containing SO 2. This paper attempts to demonstrate the advantage of not only using Fe(II)Cit chelate to absorb nitrogen oxides from flue gas but also the advantage gained from adding microorganisms to the system. Two distinct classes of microorganisms are needed: denitrifying and iron-reducing bacteria. The presence of oxygen in flue gas will affect the absorption efficiency of NO by Fe(II)Cit chelate. The oxidation of Fe(II) can be slowed with the help of bacteria in two ways: bacteria can serve to directly reduce Fe(III) to Fe(II) or they can serve to keep levels of dissolved oxygen in the solution low. As a result, after NO absorption, Fe(II)(Cit)NO will be reduced by denitrifying bacteria to Fe(II)Cit while Fe(III) is reduced by anaerobic bacteria back to Fe(II). Our experiments have shown that the implementation of our protocol allowed for an NO reduction rate constant increase from standard levels of 0.0222–0.100 mM h −1 with inlet NO changed from 250 to 1000 ppm. We have also found that total Fe concentration tends to decrease after prolonged periods of operation due to the loss of some Fe to the formation of Fe(OH) 3 that settles together with the sludge at the bottom of bioreactor tank.</description><subject>Absorption</subject><subject>Air Pollutants - isolation &amp; purification</subject><subject>Anilides</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Azo Compounds</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - metabolism</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of gaseous effluents</subject><subject>Biotechnology</subject><subject>Environment and pollution</subject><subject>Exact sciences and technology</subject><subject>Fe(II)Cit</subject><subject>Ferrous Compounds - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General processes of purification and dust removal</subject><subject>Glucose - metabolism</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Iron Chelating Agents - chemistry</subject><subject>Microbial regeneration</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - isolation &amp; purification</subject><subject>Oxygen - pharmacology</subject><subject>Pollution</subject><subject>Prevention and purification methods</subject><subject>Sewage - microbiology</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1v1DAQBmALgei28BeQOYDKIWHsxI5zrFZ8rFQJCcHZsp3JrldJvNhJof--Xu1K5dae5uBnxmO_hLxnUDJg8vO-dDscQzrsMGLJAWTJWAlMvCArppq2YLxVL8kKoBaFFJW4IJcp7QFys2hfkwvWcKgrYCvif-ZBd37a0snP0Tsa_vkOaR_DSPthQbo1iS7pCHwM0_Vm84m6LM2MNC8xHKuxKcTD7MNE__p5R0fvYrDeDDTiFifMOJ-9Ia96MyR8e65X5PfXL7_W34vbH98265vbwtWymQvWtNIK1okeura2woJtFK85qy2XWHNsetmxumttD6bhVkmshFJomqpzomqqK_LxNPcQw58F06xHnxwOg5kwLElzEFxI4E9CVitQrBUZtieYn5VSxF4foh9NvNcM9DEQvdf_BaKPgWjGdA4k9747X7LYEbvHznMCGXw4A5OcGfpoJufTo1OSc1Aqu_XJYf67O49RJ-dxctj5iG7WXfDPWOcBanqwHA</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Xu, Xinhua</creator><creator>Chang, Shih Ger</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7UA</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20070401</creationdate><title>Removing nitric oxide from flue gas using iron(II) citrate chelate absorption with microbial regeneration</title><author>Xu, Xinhua ; Chang, Shih Ger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-1796b51d5f0d94b5b0b7824214b26e42e7f6d14d9bf0a72b86e3588ea73dc5373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Absorption</topic><topic>Air Pollutants - isolation &amp; purification</topic><topic>Anilides</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Azo Compounds</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - metabolism</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of gaseous effluents</topic><topic>Biotechnology</topic><topic>Environment and pollution</topic><topic>Exact sciences and technology</topic><topic>Fe(II)Cit</topic><topic>Ferrous Compounds - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General processes of purification and dust removal</topic><topic>Glucose - metabolism</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Iron Chelating Agents - chemistry</topic><topic>Microbial regeneration</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - isolation &amp; purification</topic><topic>Oxygen - pharmacology</topic><topic>Pollution</topic><topic>Prevention and purification methods</topic><topic>Sewage - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xinhua</creatorcontrib><creatorcontrib>Chang, Shih Ger</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xinhua</au><au>Chang, Shih Ger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removing nitric oxide from flue gas using iron(II) citrate chelate absorption with microbial regeneration</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2007-04-01</date><risdate>2007</risdate><volume>67</volume><issue>8</issue><spage>1628</spage><epage>1636</epage><pages>1628-1636</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><coden>CMSHAF</coden><abstract>The addition of metal chelates such as Fe(II)EDTA or Fe(II)Cit to wet flue gas desulfurization systems has been shown to increase the amount of NO x absorption from gas streams containing SO 2. This paper attempts to demonstrate the advantage of not only using Fe(II)Cit chelate to absorb nitrogen oxides from flue gas but also the advantage gained from adding microorganisms to the system. Two distinct classes of microorganisms are needed: denitrifying and iron-reducing bacteria. The presence of oxygen in flue gas will affect the absorption efficiency of NO by Fe(II)Cit chelate. The oxidation of Fe(II) can be slowed with the help of bacteria in two ways: bacteria can serve to directly reduce Fe(III) to Fe(II) or they can serve to keep levels of dissolved oxygen in the solution low. As a result, after NO absorption, Fe(II)(Cit)NO will be reduced by denitrifying bacteria to Fe(II)Cit while Fe(III) is reduced by anaerobic bacteria back to Fe(II). Our experiments have shown that the implementation of our protocol allowed for an NO reduction rate constant increase from standard levels of 0.0222–0.100 mM h −1 with inlet NO changed from 250 to 1000 ppm. We have also found that total Fe concentration tends to decrease after prolonged periods of operation due to the loss of some Fe to the formation of Fe(OH) 3 that settles together with the sludge at the bottom of bioreactor tank.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>17204301</pmid><doi>10.1016/j.chemosphere.2006.11.015</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2007-04, Vol.67 (8), p.1628-1636
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_20525602
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Absorption
Air Pollutants - isolation & purification
Anilides
Applied sciences
Atmospheric pollution
Azo Compounds
Bacteria - drug effects
Bacteria - metabolism
Biodegradation, Environmental
Biological and medical sciences
Biological treatment of gaseous effluents
Biotechnology
Environment and pollution
Exact sciences and technology
Fe(II)Cit
Ferrous Compounds - chemistry
Fundamental and applied biological sciences. Psychology
General processes of purification and dust removal
Glucose - metabolism
Industrial applications and implications. Economical aspects
Iron Chelating Agents - chemistry
Microbial regeneration
Nitric oxide
Nitric Oxide - isolation & purification
Oxygen - pharmacology
Pollution
Prevention and purification methods
Sewage - microbiology
title Removing nitric oxide from flue gas using iron(II) citrate chelate absorption with microbial regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removing%20nitric%20oxide%20from%20flue%20gas%20using%20iron(II)%20citrate%20chelate%20absorption%20with%20microbial%20regeneration&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Xu,%20Xinhua&rft.date=2007-04-01&rft.volume=67&rft.issue=8&rft.spage=1628&rft.epage=1636&rft.pages=1628-1636&rft.issn=0045-6535&rft.eissn=1879-1298&rft.coden=CMSHAF&rft_id=info:doi/10.1016/j.chemosphere.2006.11.015&rft_dat=%3Cproquest_cross%3E14808195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14808195&rft_id=info:pmid/17204301&rft_els_id=S0045653506015347&rfr_iscdi=true