The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease

While mitochondrial dysfunction is emerging as key in Parkinson’s disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced plurip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2018-06, Vol.23 (10), p.2976-2988
Hauptverfasser: Schöndorf, David C., Ivanyuk, Dina, Baden, Pascale, Sanchez-Martinez, Alvaro, De Cicco, Silvia, Yu, Cong, Giunta, Ivana, Schwarz, Lukas K., Di Napoli, Gabriele, Panagiotakopoulou, Vasiliki, Nestel, Sigrun, Keatinge, Marcus, Pruszak, Jan, Bandmann, Oliver, Heimrich, Bernd, Gasser, Thomas, Whitworth, Alexander J., Deleidi, Michela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2988
container_issue 10
container_start_page 2976
container_title Cell reports (Cambridge)
container_volume 23
creator Schöndorf, David C.
Ivanyuk, Dina
Baden, Pascale
Sanchez-Martinez, Alvaro
De Cicco, Silvia
Yu, Cong
Giunta, Ivana
Schwarz, Lukas K.
Di Napoli, Gabriele
Panagiotakopoulou, Vasiliki
Nestel, Sigrun
Keatinge, Marcus
Pruszak, Jan
Bandmann, Oliver
Heimrich, Bernd
Gasser, Thomas
Whitworth, Alexander J.
Deleidi, Michela
description While mitochondrial dysfunction is emerging as key in Parkinson’s disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced pluripotent stem cells and Drosophila models of GBA-related PD (GBA-PD), the most common PD genetic risk. Patient neurons display stress responses, mitochondrial demise, and changes in NAD+ metabolism. NAD+ precursors have been proposed to ameliorate age-related metabolic decline and disease. We report that increasing NAD+ via the NAD+ precursor nicotinamide riboside (NR) significantly ameliorates mitochondrial function in patient neurons. Human neurons require nicotinamide phosphoribosyltransferase (NAMPT) to maintain the NAD+ pool and utilize NRK1 to synthesize NAD+ from NAD+ precursors. Remarkably, NR prevents the age-related dopaminergic neuronal loss and motor decline in fly models of GBA-PD. Our findings suggest NR as a viable clinical avenue for neuroprotection in PD and other neurodegenerative diseases. [Display omitted] •NAD+ metabolism and mitochondrial function are altered in GBA-PD neurons•Human iPSC-derived neurons are responsive to NAD+ precursors•Nicotinamide riboside improves mitochondrial function in GBA-PD iPSC neurons•Nicotinamide riboside rescues neuronal loss and motor deficits in GBA-PD flies Mitochondrial damage is a key feature in Parkinson’s disease. Schöndorf et al. demonstrate that nicotinamide riboside, an NAD+ precursor, boosts mitochondrial function in neurons derived from Parkinson’s disease patient stem cells and is neuroprotective in Parkinson’s disease fly models. These findings support use of NAD+ precursors in Parkinson’s and other neurodegenerative diseases.
doi_str_mv 10.1016/j.celrep.2018.05.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2051672093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124718307423</els_id><sourcerecordid>2051672093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3899-10368e9ad080f87756cb4e8dd1b4eef6f18b230ce0476fd482147dafa8018e9f3</originalsourceid><addsrcrecordid>eNp9kcFuEzEQhi0EolXpGyDkIxLKYnu9u94LUpW0FCkNEZSz5dhj1WFjB88uUm8ceQVejyep2xTEibnMyPOPR_N_hLzkrOKMt2-3lYUhw74SjKuKNRVj_RNyLATnMy5k9_Sf-oicIm5ZiZZx3svn5Ej0qpONksfk5_UN0NXZ4g1dZ7BTxpTpKtg0hmh2wQH9FDYJHwpAOwHSqzAme5Oiy8EMdAEe7IjUREdXMOUUy-MyIdIQaVh_nj90LoZbepUcDEiTp2uTv4aIKf7-8QvpIiAYhBfkmTcDwuljPiFfLs6v55ez5cf3H-Zny5mtVd_POKtbBb1xTDGvuq5p7UaCco6XBL71XG1EzSww2bXeSSW47JzxRhWjoPf1CXl9-Hef07dyz6h3AYuZg4mQJtSCNbztBOvrIpUHqc3loAxe73PYmXyrOdP3GPRWHzDoewyaNbpgKGOvHjdMmx24v0N_TC-CdwdB8QO-B8gabYBowYXCYNQuhf9vuAOewpvV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051672093</pqid></control><display><type>article</type><title>The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Schöndorf, David C. ; Ivanyuk, Dina ; Baden, Pascale ; Sanchez-Martinez, Alvaro ; De Cicco, Silvia ; Yu, Cong ; Giunta, Ivana ; Schwarz, Lukas K. ; Di Napoli, Gabriele ; Panagiotakopoulou, Vasiliki ; Nestel, Sigrun ; Keatinge, Marcus ; Pruszak, Jan ; Bandmann, Oliver ; Heimrich, Bernd ; Gasser, Thomas ; Whitworth, Alexander J. ; Deleidi, Michela</creator><creatorcontrib>Schöndorf, David C. ; Ivanyuk, Dina ; Baden, Pascale ; Sanchez-Martinez, Alvaro ; De Cicco, Silvia ; Yu, Cong ; Giunta, Ivana ; Schwarz, Lukas K. ; Di Napoli, Gabriele ; Panagiotakopoulou, Vasiliki ; Nestel, Sigrun ; Keatinge, Marcus ; Pruszak, Jan ; Bandmann, Oliver ; Heimrich, Bernd ; Gasser, Thomas ; Whitworth, Alexander J. ; Deleidi, Michela</creatorcontrib><description>While mitochondrial dysfunction is emerging as key in Parkinson’s disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced pluripotent stem cells and Drosophila models of GBA-related PD (GBA-PD), the most common PD genetic risk. Patient neurons display stress responses, mitochondrial demise, and changes in NAD+ metabolism. NAD+ precursors have been proposed to ameliorate age-related metabolic decline and disease. We report that increasing NAD+ via the NAD+ precursor nicotinamide riboside (NR) significantly ameliorates mitochondrial function in patient neurons. Human neurons require nicotinamide phosphoribosyltransferase (NAMPT) to maintain the NAD+ pool and utilize NRK1 to synthesize NAD+ from NAD+ precursors. Remarkably, NR prevents the age-related dopaminergic neuronal loss and motor decline in fly models of GBA-PD. Our findings suggest NR as a viable clinical avenue for neuroprotection in PD and other neurodegenerative diseases. [Display omitted] •NAD+ metabolism and mitochondrial function are altered in GBA-PD neurons•Human iPSC-derived neurons are responsive to NAD+ precursors•Nicotinamide riboside improves mitochondrial function in GBA-PD iPSC neurons•Nicotinamide riboside rescues neuronal loss and motor deficits in GBA-PD flies Mitochondrial damage is a key feature in Parkinson’s disease. Schöndorf et al. demonstrate that nicotinamide riboside, an NAD+ precursor, boosts mitochondrial function in neurons derived from Parkinson’s disease patient stem cells and is neuroprotective in Parkinson’s disease fly models. These findings support use of NAD+ precursors in Parkinson’s and other neurodegenerative diseases.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2018.05.009</identifier><identifier>PMID: 29874584</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Autophagy ; Disease Models, Animal ; Dopaminergic Neurons - metabolism ; Dopaminergic Neurons - pathology ; Drosophila melanogaster - physiology ; Endoplasmic Reticulum Stress ; GBA ; Glucosylceramidase - metabolism ; Humans ; induced pluripotent stem cells ; Induced Pluripotent Stem Cells - pathology ; lysosomal storage diseases ; mitochondria ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondria - ultrastructure ; Mitochondrial Dynamics ; Motor Activity ; NAD ; NAD - metabolism ; neurodegeneration ; Neurons - metabolism ; Neurons - pathology ; Niacinamide - analogs &amp; derivatives ; Niacinamide - metabolism ; Parkinson Disease - pathology ; Parkinson Disease - physiopathology ; Parkinson’s disease ; Unfolded Protein Response</subject><ispartof>Cell reports (Cambridge), 2018-06, Vol.23 (10), p.2976-2988</ispartof><rights>2018 The Authors</rights><rights>Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3899-10368e9ad080f87756cb4e8dd1b4eef6f18b230ce0476fd482147dafa8018e9f3</citedby><cites>FETCH-LOGICAL-c3899-10368e9ad080f87756cb4e8dd1b4eef6f18b230ce0476fd482147dafa8018e9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29874584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schöndorf, David C.</creatorcontrib><creatorcontrib>Ivanyuk, Dina</creatorcontrib><creatorcontrib>Baden, Pascale</creatorcontrib><creatorcontrib>Sanchez-Martinez, Alvaro</creatorcontrib><creatorcontrib>De Cicco, Silvia</creatorcontrib><creatorcontrib>Yu, Cong</creatorcontrib><creatorcontrib>Giunta, Ivana</creatorcontrib><creatorcontrib>Schwarz, Lukas K.</creatorcontrib><creatorcontrib>Di Napoli, Gabriele</creatorcontrib><creatorcontrib>Panagiotakopoulou, Vasiliki</creatorcontrib><creatorcontrib>Nestel, Sigrun</creatorcontrib><creatorcontrib>Keatinge, Marcus</creatorcontrib><creatorcontrib>Pruszak, Jan</creatorcontrib><creatorcontrib>Bandmann, Oliver</creatorcontrib><creatorcontrib>Heimrich, Bernd</creatorcontrib><creatorcontrib>Gasser, Thomas</creatorcontrib><creatorcontrib>Whitworth, Alexander J.</creatorcontrib><creatorcontrib>Deleidi, Michela</creatorcontrib><title>The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>While mitochondrial dysfunction is emerging as key in Parkinson’s disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced pluripotent stem cells and Drosophila models of GBA-related PD (GBA-PD), the most common PD genetic risk. Patient neurons display stress responses, mitochondrial demise, and changes in NAD+ metabolism. NAD+ precursors have been proposed to ameliorate age-related metabolic decline and disease. We report that increasing NAD+ via the NAD+ precursor nicotinamide riboside (NR) significantly ameliorates mitochondrial function in patient neurons. Human neurons require nicotinamide phosphoribosyltransferase (NAMPT) to maintain the NAD+ pool and utilize NRK1 to synthesize NAD+ from NAD+ precursors. Remarkably, NR prevents the age-related dopaminergic neuronal loss and motor decline in fly models of GBA-PD. Our findings suggest NR as a viable clinical avenue for neuroprotection in PD and other neurodegenerative diseases. [Display omitted] •NAD+ metabolism and mitochondrial function are altered in GBA-PD neurons•Human iPSC-derived neurons are responsive to NAD+ precursors•Nicotinamide riboside improves mitochondrial function in GBA-PD iPSC neurons•Nicotinamide riboside rescues neuronal loss and motor deficits in GBA-PD flies Mitochondrial damage is a key feature in Parkinson’s disease. Schöndorf et al. demonstrate that nicotinamide riboside, an NAD+ precursor, boosts mitochondrial function in neurons derived from Parkinson’s disease patient stem cells and is neuroprotective in Parkinson’s disease fly models. These findings support use of NAD+ precursors in Parkinson’s and other neurodegenerative diseases.</description><subject>Animals</subject><subject>Autophagy</subject><subject>Disease Models, Animal</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Dopaminergic Neurons - pathology</subject><subject>Drosophila melanogaster - physiology</subject><subject>Endoplasmic Reticulum Stress</subject><subject>GBA</subject><subject>Glucosylceramidase - metabolism</subject><subject>Humans</subject><subject>induced pluripotent stem cells</subject><subject>Induced Pluripotent Stem Cells - pathology</subject><subject>lysosomal storage diseases</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondria - ultrastructure</subject><subject>Mitochondrial Dynamics</subject><subject>Motor Activity</subject><subject>NAD</subject><subject>NAD - metabolism</subject><subject>neurodegeneration</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Niacinamide - analogs &amp; derivatives</subject><subject>Niacinamide - metabolism</subject><subject>Parkinson Disease - pathology</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson’s disease</subject><subject>Unfolded Protein Response</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFuEzEQhi0EolXpGyDkIxLKYnu9u94LUpW0FCkNEZSz5dhj1WFjB88uUm8ceQVejyep2xTEibnMyPOPR_N_hLzkrOKMt2-3lYUhw74SjKuKNRVj_RNyLATnMy5k9_Sf-oicIm5ZiZZx3svn5Ej0qpONksfk5_UN0NXZ4g1dZ7BTxpTpKtg0hmh2wQH9FDYJHwpAOwHSqzAme5Oiy8EMdAEe7IjUREdXMOUUy-MyIdIQaVh_nj90LoZbepUcDEiTp2uTv4aIKf7-8QvpIiAYhBfkmTcDwuljPiFfLs6v55ez5cf3H-Zny5mtVd_POKtbBb1xTDGvuq5p7UaCco6XBL71XG1EzSww2bXeSSW47JzxRhWjoPf1CXl9-Hef07dyz6h3AYuZg4mQJtSCNbztBOvrIpUHqc3loAxe73PYmXyrOdP3GPRWHzDoewyaNbpgKGOvHjdMmx24v0N_TC-CdwdB8QO-B8gabYBowYXCYNQuhf9vuAOewpvV</recordid><startdate>20180605</startdate><enddate>20180605</enddate><creator>Schöndorf, David C.</creator><creator>Ivanyuk, Dina</creator><creator>Baden, Pascale</creator><creator>Sanchez-Martinez, Alvaro</creator><creator>De Cicco, Silvia</creator><creator>Yu, Cong</creator><creator>Giunta, Ivana</creator><creator>Schwarz, Lukas K.</creator><creator>Di Napoli, Gabriele</creator><creator>Panagiotakopoulou, Vasiliki</creator><creator>Nestel, Sigrun</creator><creator>Keatinge, Marcus</creator><creator>Pruszak, Jan</creator><creator>Bandmann, Oliver</creator><creator>Heimrich, Bernd</creator><creator>Gasser, Thomas</creator><creator>Whitworth, Alexander J.</creator><creator>Deleidi, Michela</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180605</creationdate><title>The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease</title><author>Schöndorf, David C. ; Ivanyuk, Dina ; Baden, Pascale ; Sanchez-Martinez, Alvaro ; De Cicco, Silvia ; Yu, Cong ; Giunta, Ivana ; Schwarz, Lukas K. ; Di Napoli, Gabriele ; Panagiotakopoulou, Vasiliki ; Nestel, Sigrun ; Keatinge, Marcus ; Pruszak, Jan ; Bandmann, Oliver ; Heimrich, Bernd ; Gasser, Thomas ; Whitworth, Alexander J. ; Deleidi, Michela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3899-10368e9ad080f87756cb4e8dd1b4eef6f18b230ce0476fd482147dafa8018e9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>Disease Models, Animal</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Dopaminergic Neurons - pathology</topic><topic>Drosophila melanogaster - physiology</topic><topic>Endoplasmic Reticulum Stress</topic><topic>GBA</topic><topic>Glucosylceramidase - metabolism</topic><topic>Humans</topic><topic>induced pluripotent stem cells</topic><topic>Induced Pluripotent Stem Cells - pathology</topic><topic>lysosomal storage diseases</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondria - ultrastructure</topic><topic>Mitochondrial Dynamics</topic><topic>Motor Activity</topic><topic>NAD</topic><topic>NAD - metabolism</topic><topic>neurodegeneration</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Niacinamide - analogs &amp; derivatives</topic><topic>Niacinamide - metabolism</topic><topic>Parkinson Disease - pathology</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson’s disease</topic><topic>Unfolded Protein Response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schöndorf, David C.</creatorcontrib><creatorcontrib>Ivanyuk, Dina</creatorcontrib><creatorcontrib>Baden, Pascale</creatorcontrib><creatorcontrib>Sanchez-Martinez, Alvaro</creatorcontrib><creatorcontrib>De Cicco, Silvia</creatorcontrib><creatorcontrib>Yu, Cong</creatorcontrib><creatorcontrib>Giunta, Ivana</creatorcontrib><creatorcontrib>Schwarz, Lukas K.</creatorcontrib><creatorcontrib>Di Napoli, Gabriele</creatorcontrib><creatorcontrib>Panagiotakopoulou, Vasiliki</creatorcontrib><creatorcontrib>Nestel, Sigrun</creatorcontrib><creatorcontrib>Keatinge, Marcus</creatorcontrib><creatorcontrib>Pruszak, Jan</creatorcontrib><creatorcontrib>Bandmann, Oliver</creatorcontrib><creatorcontrib>Heimrich, Bernd</creatorcontrib><creatorcontrib>Gasser, Thomas</creatorcontrib><creatorcontrib>Whitworth, Alexander J.</creatorcontrib><creatorcontrib>Deleidi, Michela</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schöndorf, David C.</au><au>Ivanyuk, Dina</au><au>Baden, Pascale</au><au>Sanchez-Martinez, Alvaro</au><au>De Cicco, Silvia</au><au>Yu, Cong</au><au>Giunta, Ivana</au><au>Schwarz, Lukas K.</au><au>Di Napoli, Gabriele</au><au>Panagiotakopoulou, Vasiliki</au><au>Nestel, Sigrun</au><au>Keatinge, Marcus</au><au>Pruszak, Jan</au><au>Bandmann, Oliver</au><au>Heimrich, Bernd</au><au>Gasser, Thomas</au><au>Whitworth, Alexander J.</au><au>Deleidi, Michela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2018-06-05</date><risdate>2018</risdate><volume>23</volume><issue>10</issue><spage>2976</spage><epage>2988</epage><pages>2976-2988</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>While mitochondrial dysfunction is emerging as key in Parkinson’s disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced pluripotent stem cells and Drosophila models of GBA-related PD (GBA-PD), the most common PD genetic risk. Patient neurons display stress responses, mitochondrial demise, and changes in NAD+ metabolism. NAD+ precursors have been proposed to ameliorate age-related metabolic decline and disease. We report that increasing NAD+ via the NAD+ precursor nicotinamide riboside (NR) significantly ameliorates mitochondrial function in patient neurons. Human neurons require nicotinamide phosphoribosyltransferase (NAMPT) to maintain the NAD+ pool and utilize NRK1 to synthesize NAD+ from NAD+ precursors. Remarkably, NR prevents the age-related dopaminergic neuronal loss and motor decline in fly models of GBA-PD. Our findings suggest NR as a viable clinical avenue for neuroprotection in PD and other neurodegenerative diseases. [Display omitted] •NAD+ metabolism and mitochondrial function are altered in GBA-PD neurons•Human iPSC-derived neurons are responsive to NAD+ precursors•Nicotinamide riboside improves mitochondrial function in GBA-PD iPSC neurons•Nicotinamide riboside rescues neuronal loss and motor deficits in GBA-PD flies Mitochondrial damage is a key feature in Parkinson’s disease. Schöndorf et al. demonstrate that nicotinamide riboside, an NAD+ precursor, boosts mitochondrial function in neurons derived from Parkinson’s disease patient stem cells and is neuroprotective in Parkinson’s disease fly models. These findings support use of NAD+ precursors in Parkinson’s and other neurodegenerative diseases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29874584</pmid><doi>10.1016/j.celrep.2018.05.009</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2018-06, Vol.23 (10), p.2976-2988
issn 2211-1247
2211-1247
language eng
recordid cdi_proquest_miscellaneous_2051672093
source MEDLINE; DOAJ Directory of Open Access Journals; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Autophagy
Disease Models, Animal
Dopaminergic Neurons - metabolism
Dopaminergic Neurons - pathology
Drosophila melanogaster - physiology
Endoplasmic Reticulum Stress
GBA
Glucosylceramidase - metabolism
Humans
induced pluripotent stem cells
Induced Pluripotent Stem Cells - pathology
lysosomal storage diseases
mitochondria
Mitochondria - metabolism
Mitochondria - pathology
Mitochondria - ultrastructure
Mitochondrial Dynamics
Motor Activity
NAD
NAD - metabolism
neurodegeneration
Neurons - metabolism
Neurons - pathology
Niacinamide - analogs & derivatives
Niacinamide - metabolism
Parkinson Disease - pathology
Parkinson Disease - physiopathology
Parkinson’s disease
Unfolded Protein Response
title The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20NAD+%20Precursor%20Nicotinamide%20Riboside%20Rescues%20Mitochondrial%20Defects%20and%20Neuronal%20Loss%20in%20iPSC%20and%20Fly%20Models%20of%20Parkinson%E2%80%99s%20Disease&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Sch%C3%B6ndorf,%20David%20C.&rft.date=2018-06-05&rft.volume=23&rft.issue=10&rft.spage=2976&rft.epage=2988&rft.pages=2976-2988&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2018.05.009&rft_dat=%3Cproquest_cross%3E2051672093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2051672093&rft_id=info:pmid/29874584&rft_els_id=S2211124718307423&rfr_iscdi=true