The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease
While mitochondrial dysfunction is emerging as key in Parkinson’s disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced plurip...
Gespeichert in:
Veröffentlicht in: | Cell reports (Cambridge) 2018-06, Vol.23 (10), p.2976-2988 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2988 |
---|---|
container_issue | 10 |
container_start_page | 2976 |
container_title | Cell reports (Cambridge) |
container_volume | 23 |
creator | Schöndorf, David C. Ivanyuk, Dina Baden, Pascale Sanchez-Martinez, Alvaro De Cicco, Silvia Yu, Cong Giunta, Ivana Schwarz, Lukas K. Di Napoli, Gabriele Panagiotakopoulou, Vasiliki Nestel, Sigrun Keatinge, Marcus Pruszak, Jan Bandmann, Oliver Heimrich, Bernd Gasser, Thomas Whitworth, Alexander J. Deleidi, Michela |
description | While mitochondrial dysfunction is emerging as key in Parkinson’s disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced pluripotent stem cells and Drosophila models of GBA-related PD (GBA-PD), the most common PD genetic risk. Patient neurons display stress responses, mitochondrial demise, and changes in NAD+ metabolism. NAD+ precursors have been proposed to ameliorate age-related metabolic decline and disease. We report that increasing NAD+ via the NAD+ precursor nicotinamide riboside (NR) significantly ameliorates mitochondrial function in patient neurons. Human neurons require nicotinamide phosphoribosyltransferase (NAMPT) to maintain the NAD+ pool and utilize NRK1 to synthesize NAD+ from NAD+ precursors. Remarkably, NR prevents the age-related dopaminergic neuronal loss and motor decline in fly models of GBA-PD. Our findings suggest NR as a viable clinical avenue for neuroprotection in PD and other neurodegenerative diseases.
[Display omitted]
•NAD+ metabolism and mitochondrial function are altered in GBA-PD neurons•Human iPSC-derived neurons are responsive to NAD+ precursors•Nicotinamide riboside improves mitochondrial function in GBA-PD iPSC neurons•Nicotinamide riboside rescues neuronal loss and motor deficits in GBA-PD flies
Mitochondrial damage is a key feature in Parkinson’s disease. Schöndorf et al. demonstrate that nicotinamide riboside, an NAD+ precursor, boosts mitochondrial function in neurons derived from Parkinson’s disease patient stem cells and is neuroprotective in Parkinson’s disease fly models. These findings support use of NAD+ precursors in Parkinson’s and other neurodegenerative diseases. |
doi_str_mv | 10.1016/j.celrep.2018.05.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2051672093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124718307423</els_id><sourcerecordid>2051672093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3899-10368e9ad080f87756cb4e8dd1b4eef6f18b230ce0476fd482147dafa8018e9f3</originalsourceid><addsrcrecordid>eNp9kcFuEzEQhi0EolXpGyDkIxLKYnu9u94LUpW0FCkNEZSz5dhj1WFjB88uUm8ceQVejyep2xTEibnMyPOPR_N_hLzkrOKMt2-3lYUhw74SjKuKNRVj_RNyLATnMy5k9_Sf-oicIm5ZiZZx3svn5Ej0qpONksfk5_UN0NXZ4g1dZ7BTxpTpKtg0hmh2wQH9FDYJHwpAOwHSqzAme5Oiy8EMdAEe7IjUREdXMOUUy-MyIdIQaVh_nj90LoZbepUcDEiTp2uTv4aIKf7-8QvpIiAYhBfkmTcDwuljPiFfLs6v55ez5cf3H-Zny5mtVd_POKtbBb1xTDGvuq5p7UaCco6XBL71XG1EzSww2bXeSSW47JzxRhWjoPf1CXl9-Hef07dyz6h3AYuZg4mQJtSCNbztBOvrIpUHqc3loAxe73PYmXyrOdP3GPRWHzDoewyaNbpgKGOvHjdMmx24v0N_TC-CdwdB8QO-B8gabYBowYXCYNQuhf9vuAOewpvV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051672093</pqid></control><display><type>article</type><title>The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Schöndorf, David C. ; Ivanyuk, Dina ; Baden, Pascale ; Sanchez-Martinez, Alvaro ; De Cicco, Silvia ; Yu, Cong ; Giunta, Ivana ; Schwarz, Lukas K. ; Di Napoli, Gabriele ; Panagiotakopoulou, Vasiliki ; Nestel, Sigrun ; Keatinge, Marcus ; Pruszak, Jan ; Bandmann, Oliver ; Heimrich, Bernd ; Gasser, Thomas ; Whitworth, Alexander J. ; Deleidi, Michela</creator><creatorcontrib>Schöndorf, David C. ; Ivanyuk, Dina ; Baden, Pascale ; Sanchez-Martinez, Alvaro ; De Cicco, Silvia ; Yu, Cong ; Giunta, Ivana ; Schwarz, Lukas K. ; Di Napoli, Gabriele ; Panagiotakopoulou, Vasiliki ; Nestel, Sigrun ; Keatinge, Marcus ; Pruszak, Jan ; Bandmann, Oliver ; Heimrich, Bernd ; Gasser, Thomas ; Whitworth, Alexander J. ; Deleidi, Michela</creatorcontrib><description>While mitochondrial dysfunction is emerging as key in Parkinson’s disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced pluripotent stem cells and Drosophila models of GBA-related PD (GBA-PD), the most common PD genetic risk. Patient neurons display stress responses, mitochondrial demise, and changes in NAD+ metabolism. NAD+ precursors have been proposed to ameliorate age-related metabolic decline and disease. We report that increasing NAD+ via the NAD+ precursor nicotinamide riboside (NR) significantly ameliorates mitochondrial function in patient neurons. Human neurons require nicotinamide phosphoribosyltransferase (NAMPT) to maintain the NAD+ pool and utilize NRK1 to synthesize NAD+ from NAD+ precursors. Remarkably, NR prevents the age-related dopaminergic neuronal loss and motor decline in fly models of GBA-PD. Our findings suggest NR as a viable clinical avenue for neuroprotection in PD and other neurodegenerative diseases.
[Display omitted]
•NAD+ metabolism and mitochondrial function are altered in GBA-PD neurons•Human iPSC-derived neurons are responsive to NAD+ precursors•Nicotinamide riboside improves mitochondrial function in GBA-PD iPSC neurons•Nicotinamide riboside rescues neuronal loss and motor deficits in GBA-PD flies
Mitochondrial damage is a key feature in Parkinson’s disease. Schöndorf et al. demonstrate that nicotinamide riboside, an NAD+ precursor, boosts mitochondrial function in neurons derived from Parkinson’s disease patient stem cells and is neuroprotective in Parkinson’s disease fly models. These findings support use of NAD+ precursors in Parkinson’s and other neurodegenerative diseases.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2018.05.009</identifier><identifier>PMID: 29874584</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Autophagy ; Disease Models, Animal ; Dopaminergic Neurons - metabolism ; Dopaminergic Neurons - pathology ; Drosophila melanogaster - physiology ; Endoplasmic Reticulum Stress ; GBA ; Glucosylceramidase - metabolism ; Humans ; induced pluripotent stem cells ; Induced Pluripotent Stem Cells - pathology ; lysosomal storage diseases ; mitochondria ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondria - ultrastructure ; Mitochondrial Dynamics ; Motor Activity ; NAD ; NAD - metabolism ; neurodegeneration ; Neurons - metabolism ; Neurons - pathology ; Niacinamide - analogs & derivatives ; Niacinamide - metabolism ; Parkinson Disease - pathology ; Parkinson Disease - physiopathology ; Parkinson’s disease ; Unfolded Protein Response</subject><ispartof>Cell reports (Cambridge), 2018-06, Vol.23 (10), p.2976-2988</ispartof><rights>2018 The Authors</rights><rights>Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3899-10368e9ad080f87756cb4e8dd1b4eef6f18b230ce0476fd482147dafa8018e9f3</citedby><cites>FETCH-LOGICAL-c3899-10368e9ad080f87756cb4e8dd1b4eef6f18b230ce0476fd482147dafa8018e9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29874584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schöndorf, David C.</creatorcontrib><creatorcontrib>Ivanyuk, Dina</creatorcontrib><creatorcontrib>Baden, Pascale</creatorcontrib><creatorcontrib>Sanchez-Martinez, Alvaro</creatorcontrib><creatorcontrib>De Cicco, Silvia</creatorcontrib><creatorcontrib>Yu, Cong</creatorcontrib><creatorcontrib>Giunta, Ivana</creatorcontrib><creatorcontrib>Schwarz, Lukas K.</creatorcontrib><creatorcontrib>Di Napoli, Gabriele</creatorcontrib><creatorcontrib>Panagiotakopoulou, Vasiliki</creatorcontrib><creatorcontrib>Nestel, Sigrun</creatorcontrib><creatorcontrib>Keatinge, Marcus</creatorcontrib><creatorcontrib>Pruszak, Jan</creatorcontrib><creatorcontrib>Bandmann, Oliver</creatorcontrib><creatorcontrib>Heimrich, Bernd</creatorcontrib><creatorcontrib>Gasser, Thomas</creatorcontrib><creatorcontrib>Whitworth, Alexander J.</creatorcontrib><creatorcontrib>Deleidi, Michela</creatorcontrib><title>The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>While mitochondrial dysfunction is emerging as key in Parkinson’s disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced pluripotent stem cells and Drosophila models of GBA-related PD (GBA-PD), the most common PD genetic risk. Patient neurons display stress responses, mitochondrial demise, and changes in NAD+ metabolism. NAD+ precursors have been proposed to ameliorate age-related metabolic decline and disease. We report that increasing NAD+ via the NAD+ precursor nicotinamide riboside (NR) significantly ameliorates mitochondrial function in patient neurons. Human neurons require nicotinamide phosphoribosyltransferase (NAMPT) to maintain the NAD+ pool and utilize NRK1 to synthesize NAD+ from NAD+ precursors. Remarkably, NR prevents the age-related dopaminergic neuronal loss and motor decline in fly models of GBA-PD. Our findings suggest NR as a viable clinical avenue for neuroprotection in PD and other neurodegenerative diseases.
[Display omitted]
•NAD+ metabolism and mitochondrial function are altered in GBA-PD neurons•Human iPSC-derived neurons are responsive to NAD+ precursors•Nicotinamide riboside improves mitochondrial function in GBA-PD iPSC neurons•Nicotinamide riboside rescues neuronal loss and motor deficits in GBA-PD flies
Mitochondrial damage is a key feature in Parkinson’s disease. Schöndorf et al. demonstrate that nicotinamide riboside, an NAD+ precursor, boosts mitochondrial function in neurons derived from Parkinson’s disease patient stem cells and is neuroprotective in Parkinson’s disease fly models. These findings support use of NAD+ precursors in Parkinson’s and other neurodegenerative diseases.</description><subject>Animals</subject><subject>Autophagy</subject><subject>Disease Models, Animal</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>Dopaminergic Neurons - pathology</subject><subject>Drosophila melanogaster - physiology</subject><subject>Endoplasmic Reticulum Stress</subject><subject>GBA</subject><subject>Glucosylceramidase - metabolism</subject><subject>Humans</subject><subject>induced pluripotent stem cells</subject><subject>Induced Pluripotent Stem Cells - pathology</subject><subject>lysosomal storage diseases</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondria - ultrastructure</subject><subject>Mitochondrial Dynamics</subject><subject>Motor Activity</subject><subject>NAD</subject><subject>NAD - metabolism</subject><subject>neurodegeneration</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Niacinamide - analogs & derivatives</subject><subject>Niacinamide - metabolism</subject><subject>Parkinson Disease - pathology</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson’s disease</subject><subject>Unfolded Protein Response</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFuEzEQhi0EolXpGyDkIxLKYnu9u94LUpW0FCkNEZSz5dhj1WFjB88uUm8ceQVejyep2xTEibnMyPOPR_N_hLzkrOKMt2-3lYUhw74SjKuKNRVj_RNyLATnMy5k9_Sf-oicIm5ZiZZx3svn5Ej0qpONksfk5_UN0NXZ4g1dZ7BTxpTpKtg0hmh2wQH9FDYJHwpAOwHSqzAme5Oiy8EMdAEe7IjUREdXMOUUy-MyIdIQaVh_nj90LoZbepUcDEiTp2uTv4aIKf7-8QvpIiAYhBfkmTcDwuljPiFfLs6v55ez5cf3H-Zny5mtVd_POKtbBb1xTDGvuq5p7UaCco6XBL71XG1EzSww2bXeSSW47JzxRhWjoPf1CXl9-Hef07dyz6h3AYuZg4mQJtSCNbztBOvrIpUHqc3loAxe73PYmXyrOdP3GPRWHzDoewyaNbpgKGOvHjdMmx24v0N_TC-CdwdB8QO-B8gabYBowYXCYNQuhf9vuAOewpvV</recordid><startdate>20180605</startdate><enddate>20180605</enddate><creator>Schöndorf, David C.</creator><creator>Ivanyuk, Dina</creator><creator>Baden, Pascale</creator><creator>Sanchez-Martinez, Alvaro</creator><creator>De Cicco, Silvia</creator><creator>Yu, Cong</creator><creator>Giunta, Ivana</creator><creator>Schwarz, Lukas K.</creator><creator>Di Napoli, Gabriele</creator><creator>Panagiotakopoulou, Vasiliki</creator><creator>Nestel, Sigrun</creator><creator>Keatinge, Marcus</creator><creator>Pruszak, Jan</creator><creator>Bandmann, Oliver</creator><creator>Heimrich, Bernd</creator><creator>Gasser, Thomas</creator><creator>Whitworth, Alexander J.</creator><creator>Deleidi, Michela</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180605</creationdate><title>The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease</title><author>Schöndorf, David C. ; Ivanyuk, Dina ; Baden, Pascale ; Sanchez-Martinez, Alvaro ; De Cicco, Silvia ; Yu, Cong ; Giunta, Ivana ; Schwarz, Lukas K. ; Di Napoli, Gabriele ; Panagiotakopoulou, Vasiliki ; Nestel, Sigrun ; Keatinge, Marcus ; Pruszak, Jan ; Bandmann, Oliver ; Heimrich, Bernd ; Gasser, Thomas ; Whitworth, Alexander J. ; Deleidi, Michela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3899-10368e9ad080f87756cb4e8dd1b4eef6f18b230ce0476fd482147dafa8018e9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>Disease Models, Animal</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>Dopaminergic Neurons - pathology</topic><topic>Drosophila melanogaster - physiology</topic><topic>Endoplasmic Reticulum Stress</topic><topic>GBA</topic><topic>Glucosylceramidase - metabolism</topic><topic>Humans</topic><topic>induced pluripotent stem cells</topic><topic>Induced Pluripotent Stem Cells - pathology</topic><topic>lysosomal storage diseases</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondria - ultrastructure</topic><topic>Mitochondrial Dynamics</topic><topic>Motor Activity</topic><topic>NAD</topic><topic>NAD - metabolism</topic><topic>neurodegeneration</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Niacinamide - analogs & derivatives</topic><topic>Niacinamide - metabolism</topic><topic>Parkinson Disease - pathology</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson’s disease</topic><topic>Unfolded Protein Response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schöndorf, David C.</creatorcontrib><creatorcontrib>Ivanyuk, Dina</creatorcontrib><creatorcontrib>Baden, Pascale</creatorcontrib><creatorcontrib>Sanchez-Martinez, Alvaro</creatorcontrib><creatorcontrib>De Cicco, Silvia</creatorcontrib><creatorcontrib>Yu, Cong</creatorcontrib><creatorcontrib>Giunta, Ivana</creatorcontrib><creatorcontrib>Schwarz, Lukas K.</creatorcontrib><creatorcontrib>Di Napoli, Gabriele</creatorcontrib><creatorcontrib>Panagiotakopoulou, Vasiliki</creatorcontrib><creatorcontrib>Nestel, Sigrun</creatorcontrib><creatorcontrib>Keatinge, Marcus</creatorcontrib><creatorcontrib>Pruszak, Jan</creatorcontrib><creatorcontrib>Bandmann, Oliver</creatorcontrib><creatorcontrib>Heimrich, Bernd</creatorcontrib><creatorcontrib>Gasser, Thomas</creatorcontrib><creatorcontrib>Whitworth, Alexander J.</creatorcontrib><creatorcontrib>Deleidi, Michela</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schöndorf, David C.</au><au>Ivanyuk, Dina</au><au>Baden, Pascale</au><au>Sanchez-Martinez, Alvaro</au><au>De Cicco, Silvia</au><au>Yu, Cong</au><au>Giunta, Ivana</au><au>Schwarz, Lukas K.</au><au>Di Napoli, Gabriele</au><au>Panagiotakopoulou, Vasiliki</au><au>Nestel, Sigrun</au><au>Keatinge, Marcus</au><au>Pruszak, Jan</au><au>Bandmann, Oliver</au><au>Heimrich, Bernd</au><au>Gasser, Thomas</au><au>Whitworth, Alexander J.</au><au>Deleidi, Michela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2018-06-05</date><risdate>2018</risdate><volume>23</volume><issue>10</issue><spage>2976</spage><epage>2988</epage><pages>2976-2988</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>While mitochondrial dysfunction is emerging as key in Parkinson’s disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced pluripotent stem cells and Drosophila models of GBA-related PD (GBA-PD), the most common PD genetic risk. Patient neurons display stress responses, mitochondrial demise, and changes in NAD+ metabolism. NAD+ precursors have been proposed to ameliorate age-related metabolic decline and disease. We report that increasing NAD+ via the NAD+ precursor nicotinamide riboside (NR) significantly ameliorates mitochondrial function in patient neurons. Human neurons require nicotinamide phosphoribosyltransferase (NAMPT) to maintain the NAD+ pool and utilize NRK1 to synthesize NAD+ from NAD+ precursors. Remarkably, NR prevents the age-related dopaminergic neuronal loss and motor decline in fly models of GBA-PD. Our findings suggest NR as a viable clinical avenue for neuroprotection in PD and other neurodegenerative diseases.
[Display omitted]
•NAD+ metabolism and mitochondrial function are altered in GBA-PD neurons•Human iPSC-derived neurons are responsive to NAD+ precursors•Nicotinamide riboside improves mitochondrial function in GBA-PD iPSC neurons•Nicotinamide riboside rescues neuronal loss and motor deficits in GBA-PD flies
Mitochondrial damage is a key feature in Parkinson’s disease. Schöndorf et al. demonstrate that nicotinamide riboside, an NAD+ precursor, boosts mitochondrial function in neurons derived from Parkinson’s disease patient stem cells and is neuroprotective in Parkinson’s disease fly models. These findings support use of NAD+ precursors in Parkinson’s and other neurodegenerative diseases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29874584</pmid><doi>10.1016/j.celrep.2018.05.009</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2018-06, Vol.23 (10), p.2976-2988 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_proquest_miscellaneous_2051672093 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Autophagy Disease Models, Animal Dopaminergic Neurons - metabolism Dopaminergic Neurons - pathology Drosophila melanogaster - physiology Endoplasmic Reticulum Stress GBA Glucosylceramidase - metabolism Humans induced pluripotent stem cells Induced Pluripotent Stem Cells - pathology lysosomal storage diseases mitochondria Mitochondria - metabolism Mitochondria - pathology Mitochondria - ultrastructure Mitochondrial Dynamics Motor Activity NAD NAD - metabolism neurodegeneration Neurons - metabolism Neurons - pathology Niacinamide - analogs & derivatives Niacinamide - metabolism Parkinson Disease - pathology Parkinson Disease - physiopathology Parkinson’s disease Unfolded Protein Response |
title | The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20NAD+%20Precursor%20Nicotinamide%20Riboside%20Rescues%20Mitochondrial%20Defects%20and%20Neuronal%20Loss%20in%20iPSC%20and%20Fly%20Models%20of%20Parkinson%E2%80%99s%20Disease&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Sch%C3%B6ndorf,%20David%20C.&rft.date=2018-06-05&rft.volume=23&rft.issue=10&rft.spage=2976&rft.epage=2988&rft.pages=2976-2988&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2018.05.009&rft_dat=%3Cproquest_cross%3E2051672093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2051672093&rft_id=info:pmid/29874584&rft_els_id=S2211124718307423&rfr_iscdi=true |