Comprehensive suppression of single-molecule conductance using destructive σ-interference

The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material 1 ) shows exponential attenuation with increasing length 2 , a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2018-06, Vol.558 (7710), p.415-419
Hauptverfasser: Garner, Marc H., Li, Haixing, Chen, Yan, Su, Timothy A., Shangguan, Zhichun, Paley, Daniel W., Liu, Taifeng, Ng, Fay, Li, Hexing, Xiao, Shengxiong, Nuckolls, Colin, Venkataraman, Latha, Solomon, Gemma C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue 7710
container_start_page 415
container_title Nature (London)
container_volume 558
creator Garner, Marc H.
Li, Haixing
Chen, Yan
Su, Timothy A.
Shangguan, Zhichun
Paley, Daniel W.
Liu, Taifeng
Ng, Fay
Li, Hexing
Xiao, Shengxiong
Nuckolls, Colin
Venkataraman, Latha
Solomon, Gemma C.
description The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material 1 ) shows exponential attenuation with increasing length 2 , a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated 3 – 5 that coherent tunnelling through a molecular junction can also be suppressed by destructive quantum interference 6 , a mechanism that is not length-dependent. For the carbon-based molecules studied previously, cancelling all transmission channels would involve the suppression of contributions to the current from both the π-orbital and σ-orbital systems. Previous reports of destructive interference have demonstrated a decrease in transmission only through the π-channel. Here we report a saturated silicon-based molecule with a functionalized bicyclo[2.2.2]octasilane moiety that exhibits destructive quantum interference in its σ-system. Although molecular silicon typically forms conducting wires 7 , we use a combination of conductance measurements and ab initio calculations to show that destructive σ-interference, achieved here by locking the silicon–silicon bonds into eclipsed conformations within a bicyclic molecular framework, can yield extremely insulating molecules less than a nanometre in length. Our molecules also exhibit an unusually high thermopower (0.97 millivolts per kelvin), which is a further experimental signature of the suppression of all tunnelling paths by destructive interference: calculations indicate that the central bicyclo[2.2.2]octasilane unit is rendered less conductive than the empty space it occupies. The molecular design presented here provides a proof-of-concept for a quantum-interference-based approach to single-molecule insulators. Highly insulating silicon-based molecules, engineered so that conduction is fully suppressed by σ quantum interference even for molecules less than a nanometre long, could prove useful in molecular-scale electronic circuitry.
doi_str_mv 10.1038/s41586-018-0197-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2051662389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051662389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-366de5dfcc4e382b9d2560174f4dc6b8c70f2eb38756acc15a8ac0de72c8c10d3</originalsourceid><addsrcrecordid>eNp1kMtKxDAYhYMozjj6AG6k4MZNNZc2SZcyeAPBjW7chDb5O3Zok5pMBdc-oK9kSkcFwUUIyfn-k5OD0DHB5wQzeREykkueYiLjKkRa7KA5yQRPMy7FLppjTKMiGZ-hgxDWGOOciGwfzWghRZ5hMUfPS9f1Hl7AhuYNkjD08RRC42zi6iQ0dtVC2rkW9NBCop01g96UVkMyjGJiIGx8vBqHPz_Sxm7A1-AhEodory7bAEfbfYGerq8el7fp_cPN3fLyPtVM0E3KODeQm1rrDJikVWFoznHMWWdG80pqgWsKFYuJeak1yUtZamxAUC01wYYt0Nnk23v3OsQ8qmuChrYtLbghKBp_zTllsojo6R907QZvY7pIccEokWKkyERp70LwUKveN13p3xXBaixeTcWrWLwai1fjzMnWeag6MD8T301HgE5AiJJdgf99-n_XL_ZPkGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067321879</pqid></control><display><type>article</type><title>Comprehensive suppression of single-molecule conductance using destructive σ-interference</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Garner, Marc H. ; Li, Haixing ; Chen, Yan ; Su, Timothy A. ; Shangguan, Zhichun ; Paley, Daniel W. ; Liu, Taifeng ; Ng, Fay ; Li, Hexing ; Xiao, Shengxiong ; Nuckolls, Colin ; Venkataraman, Latha ; Solomon, Gemma C.</creator><creatorcontrib>Garner, Marc H. ; Li, Haixing ; Chen, Yan ; Su, Timothy A. ; Shangguan, Zhichun ; Paley, Daniel W. ; Liu, Taifeng ; Ng, Fay ; Li, Hexing ; Xiao, Shengxiong ; Nuckolls, Colin ; Venkataraman, Latha ; Solomon, Gemma C.</creatorcontrib><description>The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material 1 ) shows exponential attenuation with increasing length 2 , a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated 3 – 5 that coherent tunnelling through a molecular junction can also be suppressed by destructive quantum interference 6 , a mechanism that is not length-dependent. For the carbon-based molecules studied previously, cancelling all transmission channels would involve the suppression of contributions to the current from both the π-orbital and σ-orbital systems. Previous reports of destructive interference have demonstrated a decrease in transmission only through the π-channel. Here we report a saturated silicon-based molecule with a functionalized bicyclo[2.2.2]octasilane moiety that exhibits destructive quantum interference in its σ-system. Although molecular silicon typically forms conducting wires 7 , we use a combination of conductance measurements and ab initio calculations to show that destructive σ-interference, achieved here by locking the silicon–silicon bonds into eclipsed conformations within a bicyclic molecular framework, can yield extremely insulating molecules less than a nanometre in length. Our molecules also exhibit an unusually high thermopower (0.97 millivolts per kelvin), which is a further experimental signature of the suppression of all tunnelling paths by destructive interference: calculations indicate that the central bicyclo[2.2.2]octasilane unit is rendered less conductive than the empty space it occupies. The molecular design presented here provides a proof-of-concept for a quantum-interference-based approach to single-molecule insulators. Highly insulating silicon-based molecules, engineered so that conduction is fully suppressed by σ quantum interference even for molecules less than a nanometre long, could prove useful in molecular-scale electronic circuitry.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0197-9</identifier><identifier>PMID: 29875407</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/638/440/947 ; 639/766/119/998 ; 639/925/927/998 ; Attenuation ; Carbon ; Conductance ; Dependence ; Electrodes ; Electrons ; Humanities and Social Sciences ; Insulators ; Interference ; Letter ; Mathematical analysis ; Molecular chains ; multidisciplinary ; Resistance ; Science ; Science (multidisciplinary) ; Silicon</subject><ispartof>Nature (London), 2018-06, Vol.558 (7710), p.415-419</ispartof><rights>Macmillan Publishers Ltd., part of Springer Nature 2018</rights><rights>Copyright Nature Publishing Group Jun 21, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-366de5dfcc4e382b9d2560174f4dc6b8c70f2eb38756acc15a8ac0de72c8c10d3</citedby><cites>FETCH-LOGICAL-c372t-366de5dfcc4e382b9d2560174f4dc6b8c70f2eb38756acc15a8ac0de72c8c10d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-018-0197-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-018-0197-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29875407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garner, Marc H.</creatorcontrib><creatorcontrib>Li, Haixing</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Su, Timothy A.</creatorcontrib><creatorcontrib>Shangguan, Zhichun</creatorcontrib><creatorcontrib>Paley, Daniel W.</creatorcontrib><creatorcontrib>Liu, Taifeng</creatorcontrib><creatorcontrib>Ng, Fay</creatorcontrib><creatorcontrib>Li, Hexing</creatorcontrib><creatorcontrib>Xiao, Shengxiong</creatorcontrib><creatorcontrib>Nuckolls, Colin</creatorcontrib><creatorcontrib>Venkataraman, Latha</creatorcontrib><creatorcontrib>Solomon, Gemma C.</creatorcontrib><title>Comprehensive suppression of single-molecule conductance using destructive σ-interference</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material 1 ) shows exponential attenuation with increasing length 2 , a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated 3 – 5 that coherent tunnelling through a molecular junction can also be suppressed by destructive quantum interference 6 , a mechanism that is not length-dependent. For the carbon-based molecules studied previously, cancelling all transmission channels would involve the suppression of contributions to the current from both the π-orbital and σ-orbital systems. Previous reports of destructive interference have demonstrated a decrease in transmission only through the π-channel. Here we report a saturated silicon-based molecule with a functionalized bicyclo[2.2.2]octasilane moiety that exhibits destructive quantum interference in its σ-system. Although molecular silicon typically forms conducting wires 7 , we use a combination of conductance measurements and ab initio calculations to show that destructive σ-interference, achieved here by locking the silicon–silicon bonds into eclipsed conformations within a bicyclic molecular framework, can yield extremely insulating molecules less than a nanometre in length. Our molecules also exhibit an unusually high thermopower (0.97 millivolts per kelvin), which is a further experimental signature of the suppression of all tunnelling paths by destructive interference: calculations indicate that the central bicyclo[2.2.2]octasilane unit is rendered less conductive than the empty space it occupies. The molecular design presented here provides a proof-of-concept for a quantum-interference-based approach to single-molecule insulators. Highly insulating silicon-based molecules, engineered so that conduction is fully suppressed by σ quantum interference even for molecules less than a nanometre long, could prove useful in molecular-scale electronic circuitry.</description><subject>119/118</subject><subject>639/638/440/947</subject><subject>639/766/119/998</subject><subject>639/925/927/998</subject><subject>Attenuation</subject><subject>Carbon</subject><subject>Conductance</subject><subject>Dependence</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Humanities and Social Sciences</subject><subject>Insulators</subject><subject>Interference</subject><subject>Letter</subject><subject>Mathematical analysis</subject><subject>Molecular chains</subject><subject>multidisciplinary</subject><subject>Resistance</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtKxDAYhYMozjj6AG6k4MZNNZc2SZcyeAPBjW7chDb5O3Zok5pMBdc-oK9kSkcFwUUIyfn-k5OD0DHB5wQzeREykkueYiLjKkRa7KA5yQRPMy7FLppjTKMiGZ-hgxDWGOOciGwfzWghRZ5hMUfPS9f1Hl7AhuYNkjD08RRC42zi6iQ0dtVC2rkW9NBCop01g96UVkMyjGJiIGx8vBqHPz_Sxm7A1-AhEodory7bAEfbfYGerq8el7fp_cPN3fLyPtVM0E3KODeQm1rrDJikVWFoznHMWWdG80pqgWsKFYuJeak1yUtZamxAUC01wYYt0Nnk23v3OsQ8qmuChrYtLbghKBp_zTllsojo6R907QZvY7pIccEokWKkyERp70LwUKveN13p3xXBaixeTcWrWLwai1fjzMnWeag6MD8T301HgE5AiJJdgf99-n_XL_ZPkGU</recordid><startdate>20180621</startdate><enddate>20180621</enddate><creator>Garner, Marc H.</creator><creator>Li, Haixing</creator><creator>Chen, Yan</creator><creator>Su, Timothy A.</creator><creator>Shangguan, Zhichun</creator><creator>Paley, Daniel W.</creator><creator>Liu, Taifeng</creator><creator>Ng, Fay</creator><creator>Li, Hexing</creator><creator>Xiao, Shengxiong</creator><creator>Nuckolls, Colin</creator><creator>Venkataraman, Latha</creator><creator>Solomon, Gemma C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20180621</creationdate><title>Comprehensive suppression of single-molecule conductance using destructive σ-interference</title><author>Garner, Marc H. ; Li, Haixing ; Chen, Yan ; Su, Timothy A. ; Shangguan, Zhichun ; Paley, Daniel W. ; Liu, Taifeng ; Ng, Fay ; Li, Hexing ; Xiao, Shengxiong ; Nuckolls, Colin ; Venkataraman, Latha ; Solomon, Gemma C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-366de5dfcc4e382b9d2560174f4dc6b8c70f2eb38756acc15a8ac0de72c8c10d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>119/118</topic><topic>639/638/440/947</topic><topic>639/766/119/998</topic><topic>639/925/927/998</topic><topic>Attenuation</topic><topic>Carbon</topic><topic>Conductance</topic><topic>Dependence</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Humanities and Social Sciences</topic><topic>Insulators</topic><topic>Interference</topic><topic>Letter</topic><topic>Mathematical analysis</topic><topic>Molecular chains</topic><topic>multidisciplinary</topic><topic>Resistance</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garner, Marc H.</creatorcontrib><creatorcontrib>Li, Haixing</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Su, Timothy A.</creatorcontrib><creatorcontrib>Shangguan, Zhichun</creatorcontrib><creatorcontrib>Paley, Daniel W.</creatorcontrib><creatorcontrib>Liu, Taifeng</creatorcontrib><creatorcontrib>Ng, Fay</creatorcontrib><creatorcontrib>Li, Hexing</creatorcontrib><creatorcontrib>Xiao, Shengxiong</creatorcontrib><creatorcontrib>Nuckolls, Colin</creatorcontrib><creatorcontrib>Venkataraman, Latha</creatorcontrib><creatorcontrib>Solomon, Gemma C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garner, Marc H.</au><au>Li, Haixing</au><au>Chen, Yan</au><au>Su, Timothy A.</au><au>Shangguan, Zhichun</au><au>Paley, Daniel W.</au><au>Liu, Taifeng</au><au>Ng, Fay</au><au>Li, Hexing</au><au>Xiao, Shengxiong</au><au>Nuckolls, Colin</au><au>Venkataraman, Latha</au><au>Solomon, Gemma C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive suppression of single-molecule conductance using destructive σ-interference</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-06-21</date><risdate>2018</risdate><volume>558</volume><issue>7710</issue><spage>415</spage><epage>419</epage><pages>415-419</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material 1 ) shows exponential attenuation with increasing length 2 , a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated 3 – 5 that coherent tunnelling through a molecular junction can also be suppressed by destructive quantum interference 6 , a mechanism that is not length-dependent. For the carbon-based molecules studied previously, cancelling all transmission channels would involve the suppression of contributions to the current from both the π-orbital and σ-orbital systems. Previous reports of destructive interference have demonstrated a decrease in transmission only through the π-channel. Here we report a saturated silicon-based molecule with a functionalized bicyclo[2.2.2]octasilane moiety that exhibits destructive quantum interference in its σ-system. Although molecular silicon typically forms conducting wires 7 , we use a combination of conductance measurements and ab initio calculations to show that destructive σ-interference, achieved here by locking the silicon–silicon bonds into eclipsed conformations within a bicyclic molecular framework, can yield extremely insulating molecules less than a nanometre in length. Our molecules also exhibit an unusually high thermopower (0.97 millivolts per kelvin), which is a further experimental signature of the suppression of all tunnelling paths by destructive interference: calculations indicate that the central bicyclo[2.2.2]octasilane unit is rendered less conductive than the empty space it occupies. The molecular design presented here provides a proof-of-concept for a quantum-interference-based approach to single-molecule insulators. Highly insulating silicon-based molecules, engineered so that conduction is fully suppressed by σ quantum interference even for molecules less than a nanometre long, could prove useful in molecular-scale electronic circuitry.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29875407</pmid><doi>10.1038/s41586-018-0197-9</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2018-06, Vol.558 (7710), p.415-419
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2051662389
source Nature; SpringerLink Journals - AutoHoldings
subjects 119/118
639/638/440/947
639/766/119/998
639/925/927/998
Attenuation
Carbon
Conductance
Dependence
Electrodes
Electrons
Humanities and Social Sciences
Insulators
Interference
Letter
Mathematical analysis
Molecular chains
multidisciplinary
Resistance
Science
Science (multidisciplinary)
Silicon
title Comprehensive suppression of single-molecule conductance using destructive σ-interference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20suppression%20of%20single-molecule%20conductance%20using%20destructive%20%CF%83-interference&rft.jtitle=Nature%20(London)&rft.au=Garner,%20Marc%20H.&rft.date=2018-06-21&rft.volume=558&rft.issue=7710&rft.spage=415&rft.epage=419&rft.pages=415-419&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0197-9&rft_dat=%3Cproquest_cross%3E2051662389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2067321879&rft_id=info:pmid/29875407&rfr_iscdi=true