Comprehensive suppression of single-molecule conductance using destructive σ-interference
The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material 1 ) shows exponential attenuation with increasing length 2 , a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2018-06, Vol.558 (7710), p.415-419 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 419 |
---|---|
container_issue | 7710 |
container_start_page | 415 |
container_title | Nature (London) |
container_volume | 558 |
creator | Garner, Marc H. Li, Haixing Chen, Yan Su, Timothy A. Shangguan, Zhichun Paley, Daniel W. Liu, Taifeng Ng, Fay Li, Hexing Xiao, Shengxiong Nuckolls, Colin Venkataraman, Latha Solomon, Gemma C. |
description | The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material
1
) shows exponential attenuation with increasing length
2
, a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated
3
–
5
that coherent tunnelling through a molecular junction can also be suppressed by destructive quantum interference
6
, a mechanism that is not length-dependent. For the carbon-based molecules studied previously, cancelling all transmission channels would involve the suppression of contributions to the current from both the π-orbital and σ-orbital systems. Previous reports of destructive interference have demonstrated a decrease in transmission only through the π-channel. Here we report a saturated silicon-based molecule with a functionalized bicyclo[2.2.2]octasilane moiety that exhibits destructive quantum interference in its σ-system. Although molecular silicon typically forms conducting wires
7
, we use a combination of conductance measurements and ab initio calculations to show that destructive σ-interference, achieved here by locking the silicon–silicon bonds into eclipsed conformations within a bicyclic molecular framework, can yield extremely insulating molecules less than a nanometre in length. Our molecules also exhibit an unusually high thermopower (0.97 millivolts per kelvin), which is a further experimental signature of the suppression of all tunnelling paths by destructive interference: calculations indicate that the central bicyclo[2.2.2]octasilane unit is rendered less conductive than the empty space it occupies. The molecular design presented here provides a proof-of-concept for a quantum-interference-based approach to single-molecule insulators.
Highly insulating silicon-based molecules, engineered so that conduction is fully suppressed by σ quantum interference even for molecules less than a nanometre long, could prove useful in molecular-scale electronic circuitry. |
doi_str_mv | 10.1038/s41586-018-0197-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2051662389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051662389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-366de5dfcc4e382b9d2560174f4dc6b8c70f2eb38756acc15a8ac0de72c8c10d3</originalsourceid><addsrcrecordid>eNp1kMtKxDAYhYMozjj6AG6k4MZNNZc2SZcyeAPBjW7chDb5O3Zok5pMBdc-oK9kSkcFwUUIyfn-k5OD0DHB5wQzeREykkueYiLjKkRa7KA5yQRPMy7FLppjTKMiGZ-hgxDWGOOciGwfzWghRZ5hMUfPS9f1Hl7AhuYNkjD08RRC42zi6iQ0dtVC2rkW9NBCop01g96UVkMyjGJiIGx8vBqHPz_Sxm7A1-AhEodory7bAEfbfYGerq8el7fp_cPN3fLyPtVM0E3KODeQm1rrDJikVWFoznHMWWdG80pqgWsKFYuJeak1yUtZamxAUC01wYYt0Nnk23v3OsQ8qmuChrYtLbghKBp_zTllsojo6R907QZvY7pIccEokWKkyERp70LwUKveN13p3xXBaixeTcWrWLwai1fjzMnWeag6MD8T301HgE5AiJJdgf99-n_XL_ZPkGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067321879</pqid></control><display><type>article</type><title>Comprehensive suppression of single-molecule conductance using destructive σ-interference</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Garner, Marc H. ; Li, Haixing ; Chen, Yan ; Su, Timothy A. ; Shangguan, Zhichun ; Paley, Daniel W. ; Liu, Taifeng ; Ng, Fay ; Li, Hexing ; Xiao, Shengxiong ; Nuckolls, Colin ; Venkataraman, Latha ; Solomon, Gemma C.</creator><creatorcontrib>Garner, Marc H. ; Li, Haixing ; Chen, Yan ; Su, Timothy A. ; Shangguan, Zhichun ; Paley, Daniel W. ; Liu, Taifeng ; Ng, Fay ; Li, Hexing ; Xiao, Shengxiong ; Nuckolls, Colin ; Venkataraman, Latha ; Solomon, Gemma C.</creatorcontrib><description>The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material
1
) shows exponential attenuation with increasing length
2
, a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated
3
–
5
that coherent tunnelling through a molecular junction can also be suppressed by destructive quantum interference
6
, a mechanism that is not length-dependent. For the carbon-based molecules studied previously, cancelling all transmission channels would involve the suppression of contributions to the current from both the π-orbital and σ-orbital systems. Previous reports of destructive interference have demonstrated a decrease in transmission only through the π-channel. Here we report a saturated silicon-based molecule with a functionalized bicyclo[2.2.2]octasilane moiety that exhibits destructive quantum interference in its σ-system. Although molecular silicon typically forms conducting wires
7
, we use a combination of conductance measurements and ab initio calculations to show that destructive σ-interference, achieved here by locking the silicon–silicon bonds into eclipsed conformations within a bicyclic molecular framework, can yield extremely insulating molecules less than a nanometre in length. Our molecules also exhibit an unusually high thermopower (0.97 millivolts per kelvin), which is a further experimental signature of the suppression of all tunnelling paths by destructive interference: calculations indicate that the central bicyclo[2.2.2]octasilane unit is rendered less conductive than the empty space it occupies. The molecular design presented here provides a proof-of-concept for a quantum-interference-based approach to single-molecule insulators.
Highly insulating silicon-based molecules, engineered so that conduction is fully suppressed by σ quantum interference even for molecules less than a nanometre long, could prove useful in molecular-scale electronic circuitry.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0197-9</identifier><identifier>PMID: 29875407</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/638/440/947 ; 639/766/119/998 ; 639/925/927/998 ; Attenuation ; Carbon ; Conductance ; Dependence ; Electrodes ; Electrons ; Humanities and Social Sciences ; Insulators ; Interference ; Letter ; Mathematical analysis ; Molecular chains ; multidisciplinary ; Resistance ; Science ; Science (multidisciplinary) ; Silicon</subject><ispartof>Nature (London), 2018-06, Vol.558 (7710), p.415-419</ispartof><rights>Macmillan Publishers Ltd., part of Springer Nature 2018</rights><rights>Copyright Nature Publishing Group Jun 21, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-366de5dfcc4e382b9d2560174f4dc6b8c70f2eb38756acc15a8ac0de72c8c10d3</citedby><cites>FETCH-LOGICAL-c372t-366de5dfcc4e382b9d2560174f4dc6b8c70f2eb38756acc15a8ac0de72c8c10d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-018-0197-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-018-0197-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29875407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garner, Marc H.</creatorcontrib><creatorcontrib>Li, Haixing</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Su, Timothy A.</creatorcontrib><creatorcontrib>Shangguan, Zhichun</creatorcontrib><creatorcontrib>Paley, Daniel W.</creatorcontrib><creatorcontrib>Liu, Taifeng</creatorcontrib><creatorcontrib>Ng, Fay</creatorcontrib><creatorcontrib>Li, Hexing</creatorcontrib><creatorcontrib>Xiao, Shengxiong</creatorcontrib><creatorcontrib>Nuckolls, Colin</creatorcontrib><creatorcontrib>Venkataraman, Latha</creatorcontrib><creatorcontrib>Solomon, Gemma C.</creatorcontrib><title>Comprehensive suppression of single-molecule conductance using destructive σ-interference</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material
1
) shows exponential attenuation with increasing length
2
, a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated
3
–
5
that coherent tunnelling through a molecular junction can also be suppressed by destructive quantum interference
6
, a mechanism that is not length-dependent. For the carbon-based molecules studied previously, cancelling all transmission channels would involve the suppression of contributions to the current from both the π-orbital and σ-orbital systems. Previous reports of destructive interference have demonstrated a decrease in transmission only through the π-channel. Here we report a saturated silicon-based molecule with a functionalized bicyclo[2.2.2]octasilane moiety that exhibits destructive quantum interference in its σ-system. Although molecular silicon typically forms conducting wires
7
, we use a combination of conductance measurements and ab initio calculations to show that destructive σ-interference, achieved here by locking the silicon–silicon bonds into eclipsed conformations within a bicyclic molecular framework, can yield extremely insulating molecules less than a nanometre in length. Our molecules also exhibit an unusually high thermopower (0.97 millivolts per kelvin), which is a further experimental signature of the suppression of all tunnelling paths by destructive interference: calculations indicate that the central bicyclo[2.2.2]octasilane unit is rendered less conductive than the empty space it occupies. The molecular design presented here provides a proof-of-concept for a quantum-interference-based approach to single-molecule insulators.
Highly insulating silicon-based molecules, engineered so that conduction is fully suppressed by σ quantum interference even for molecules less than a nanometre long, could prove useful in molecular-scale electronic circuitry.</description><subject>119/118</subject><subject>639/638/440/947</subject><subject>639/766/119/998</subject><subject>639/925/927/998</subject><subject>Attenuation</subject><subject>Carbon</subject><subject>Conductance</subject><subject>Dependence</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Humanities and Social Sciences</subject><subject>Insulators</subject><subject>Interference</subject><subject>Letter</subject><subject>Mathematical analysis</subject><subject>Molecular chains</subject><subject>multidisciplinary</subject><subject>Resistance</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtKxDAYhYMozjj6AG6k4MZNNZc2SZcyeAPBjW7chDb5O3Zok5pMBdc-oK9kSkcFwUUIyfn-k5OD0DHB5wQzeREykkueYiLjKkRa7KA5yQRPMy7FLppjTKMiGZ-hgxDWGOOciGwfzWghRZ5hMUfPS9f1Hl7AhuYNkjD08RRC42zi6iQ0dtVC2rkW9NBCop01g96UVkMyjGJiIGx8vBqHPz_Sxm7A1-AhEodory7bAEfbfYGerq8el7fp_cPN3fLyPtVM0E3KODeQm1rrDJikVWFoznHMWWdG80pqgWsKFYuJeak1yUtZamxAUC01wYYt0Nnk23v3OsQ8qmuChrYtLbghKBp_zTllsojo6R907QZvY7pIccEokWKkyERp70LwUKveN13p3xXBaixeTcWrWLwai1fjzMnWeag6MD8T301HgE5AiJJdgf99-n_XL_ZPkGU</recordid><startdate>20180621</startdate><enddate>20180621</enddate><creator>Garner, Marc H.</creator><creator>Li, Haixing</creator><creator>Chen, Yan</creator><creator>Su, Timothy A.</creator><creator>Shangguan, Zhichun</creator><creator>Paley, Daniel W.</creator><creator>Liu, Taifeng</creator><creator>Ng, Fay</creator><creator>Li, Hexing</creator><creator>Xiao, Shengxiong</creator><creator>Nuckolls, Colin</creator><creator>Venkataraman, Latha</creator><creator>Solomon, Gemma C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20180621</creationdate><title>Comprehensive suppression of single-molecule conductance using destructive σ-interference</title><author>Garner, Marc H. ; Li, Haixing ; Chen, Yan ; Su, Timothy A. ; Shangguan, Zhichun ; Paley, Daniel W. ; Liu, Taifeng ; Ng, Fay ; Li, Hexing ; Xiao, Shengxiong ; Nuckolls, Colin ; Venkataraman, Latha ; Solomon, Gemma C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-366de5dfcc4e382b9d2560174f4dc6b8c70f2eb38756acc15a8ac0de72c8c10d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>119/118</topic><topic>639/638/440/947</topic><topic>639/766/119/998</topic><topic>639/925/927/998</topic><topic>Attenuation</topic><topic>Carbon</topic><topic>Conductance</topic><topic>Dependence</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Humanities and Social Sciences</topic><topic>Insulators</topic><topic>Interference</topic><topic>Letter</topic><topic>Mathematical analysis</topic><topic>Molecular chains</topic><topic>multidisciplinary</topic><topic>Resistance</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garner, Marc H.</creatorcontrib><creatorcontrib>Li, Haixing</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Su, Timothy A.</creatorcontrib><creatorcontrib>Shangguan, Zhichun</creatorcontrib><creatorcontrib>Paley, Daniel W.</creatorcontrib><creatorcontrib>Liu, Taifeng</creatorcontrib><creatorcontrib>Ng, Fay</creatorcontrib><creatorcontrib>Li, Hexing</creatorcontrib><creatorcontrib>Xiao, Shengxiong</creatorcontrib><creatorcontrib>Nuckolls, Colin</creatorcontrib><creatorcontrib>Venkataraman, Latha</creatorcontrib><creatorcontrib>Solomon, Gemma C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garner, Marc H.</au><au>Li, Haixing</au><au>Chen, Yan</au><au>Su, Timothy A.</au><au>Shangguan, Zhichun</au><au>Paley, Daniel W.</au><au>Liu, Taifeng</au><au>Ng, Fay</au><au>Li, Hexing</au><au>Xiao, Shengxiong</au><au>Nuckolls, Colin</au><au>Venkataraman, Latha</au><au>Solomon, Gemma C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive suppression of single-molecule conductance using destructive σ-interference</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-06-21</date><risdate>2018</risdate><volume>558</volume><issue>7710</issue><spage>415</spage><epage>419</epage><pages>415-419</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material
1
) shows exponential attenuation with increasing length
2
, a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated
3
–
5
that coherent tunnelling through a molecular junction can also be suppressed by destructive quantum interference
6
, a mechanism that is not length-dependent. For the carbon-based molecules studied previously, cancelling all transmission channels would involve the suppression of contributions to the current from both the π-orbital and σ-orbital systems. Previous reports of destructive interference have demonstrated a decrease in transmission only through the π-channel. Here we report a saturated silicon-based molecule with a functionalized bicyclo[2.2.2]octasilane moiety that exhibits destructive quantum interference in its σ-system. Although molecular silicon typically forms conducting wires
7
, we use a combination of conductance measurements and ab initio calculations to show that destructive σ-interference, achieved here by locking the silicon–silicon bonds into eclipsed conformations within a bicyclic molecular framework, can yield extremely insulating molecules less than a nanometre in length. Our molecules also exhibit an unusually high thermopower (0.97 millivolts per kelvin), which is a further experimental signature of the suppression of all tunnelling paths by destructive interference: calculations indicate that the central bicyclo[2.2.2]octasilane unit is rendered less conductive than the empty space it occupies. The molecular design presented here provides a proof-of-concept for a quantum-interference-based approach to single-molecule insulators.
Highly insulating silicon-based molecules, engineered so that conduction is fully suppressed by σ quantum interference even for molecules less than a nanometre long, could prove useful in molecular-scale electronic circuitry.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29875407</pmid><doi>10.1038/s41586-018-0197-9</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-06, Vol.558 (7710), p.415-419 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2051662389 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 119/118 639/638/440/947 639/766/119/998 639/925/927/998 Attenuation Carbon Conductance Dependence Electrodes Electrons Humanities and Social Sciences Insulators Interference Letter Mathematical analysis Molecular chains multidisciplinary Resistance Science Science (multidisciplinary) Silicon |
title | Comprehensive suppression of single-molecule conductance using destructive σ-interference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20suppression%20of%20single-molecule%20conductance%20using%20destructive%20%CF%83-interference&rft.jtitle=Nature%20(London)&rft.au=Garner,%20Marc%20H.&rft.date=2018-06-21&rft.volume=558&rft.issue=7710&rft.spage=415&rft.epage=419&rft.pages=415-419&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0197-9&rft_dat=%3Cproquest_cross%3E2051662389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2067321879&rft_id=info:pmid/29875407&rfr_iscdi=true |