3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network
Low-dose computed tomography (LDCT) has attracted major attention in the medical imaging field, since CT-associated X-ray radiation carries health risks for patients. The reduction of the CT radiation dose, however, compromises the signal-to-noise ratio, which affects image quality and diagnostic pe...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2018-06, Vol.37 (6), p.1522-1534 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low-dose computed tomography (LDCT) has attracted major attention in the medical imaging field, since CT-associated X-ray radiation carries health risks for patients. The reduction of the CT radiation dose, however, compromises the signal-to-noise ratio, which affects image quality and diagnostic performance. Recently, deep-learning-based algorithms have achieved promising results in LDCT denoising, especially convolutional neural network (CNN) and generative adversarial network (GAN) architectures. This paper introduces a conveying path-based convolutional encoder-decoder (CPCE) network in 2-D and 3-D configurations within the GAN framework for LDCT denoising. A novel feature of this approach is that an initial 3-D CPCE denoising model can be directly obtained by extending a trained 2-D CNN, which is then fine-tuned to incorporate 3-D spatial information from adjacent slices. Based on the transfer learning from 2-D to 3-D, the 3-D network converges faster and achieves a better denoising performance when compared with a training from scratch. By comparing the CPCE network with recently published work based on the simulated Mayo data set and the real MGH data set, we demonstrate that the 3-D CPCE denoising model has a better performance in that it suppresses image noise and preserves subtle structures. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2018.2832217 |