High levels of p66 and intracellular ROS in permanently arrested early embryos

A high incidence of permanent embryo arrest occurs during the first week of in vitro development. We hypothesize that this developmental arrest event is regulated by the stress adaptor protein p66shc, a genetic determinant of life span in mammals, which regulates ROS metabolism, apoptosis, and cellu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2007-04, Vol.42 (8), p.1201-1210
Hauptverfasser: Favetta, Laura A, St John, Elizabeth J, King, W Allan, Betts, Dean H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1210
container_issue 8
container_start_page 1201
container_title Free radical biology & medicine
container_volume 42
creator Favetta, Laura A
St John, Elizabeth J
King, W Allan
Betts, Dean H
description A high incidence of permanent embryo arrest occurs during the first week of in vitro development. We hypothesize that this developmental arrest event is regulated by the stress adaptor protein p66shc, a genetic determinant of life span in mammals, which regulates ROS metabolism, apoptosis, and cellular senescence. The aim of this study was to assess the relationship between intracellular oxidative stress levels with the incidence of embryo arrest and the expression of senescent-associated genes in embryos produced under different oxygen tensions. Embryos cultured under 20% oxygen conditions showed approximately 10-fold increase in oxidative stress, 2-fold increase in the percentage of 2- to 4-cell arrest, and significantly lower developmental capabilities compared to embryos cultured under a 5% oxygen environment. Quantification by real-time PCR and by semiquantitative immunofluorescence showed significantly higher p66shc mRNA and protein levels, respectively, in embryos cultured in 20% versus those cultured in 5% oxygen atmosphere. No significant changes in p53 mRNA and protein levels were detected among embryos derived from both oxygen tensions. Taken together, these results demonstrate that p66shc, but not p53, is significantly more abundant in an embryo population that exhibits higher frequencies of embryo arrest and quantities of intracellular ROS. These results further substantiate that p66shc and oxidative stress are associated with a p53-independent embryonic arrest event for in vitro-produced embryos.
doi_str_mv 10.1016/j.freeradbiomed.2007.01.018
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_20505218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20505218</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-1839a01b55733c5782c1a63ba893533aea3ce38d838ed6d5c5f70f31d57a55973</originalsourceid><addsrcrecordid>eNotjktLxEAQhOeg4Pr4DwOCt8Se9HYyOcqirrC44OO8dDIdzTJ5OJMV9t8bUSgoqg5Vn1LXBlIDJr_dp00QCeyqdujEpRlAkYKZZU_UAmxpErLL8kydx7gHgCWhXajndfvxqb18i496aPSY55p7p9t-ClyL9wfPQb9sX-dGjxI67qWf_FFzCBIncVo4zFG6KhyHeKlOG_ZRrv79Qr0_3L-t1slm-_i0utsko7H5lBiLJYOpiArEmgqb1YZzrNiWSIgsjLWgdRatuNxRTU0BDRpHBROVBV6om7_dMQxfhxlk17XxF3fGGw5xlwEBZfPND3ulVA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20505218</pqid></control><display><type>article</type><title>High levels of p66 and intracellular ROS in permanently arrested early embryos</title><source>Elsevier ScienceDirect Journals</source><creator>Favetta, Laura A ; St John, Elizabeth J ; King, W Allan ; Betts, Dean H</creator><creatorcontrib>Favetta, Laura A ; St John, Elizabeth J ; King, W Allan ; Betts, Dean H</creatorcontrib><description>A high incidence of permanent embryo arrest occurs during the first week of in vitro development. We hypothesize that this developmental arrest event is regulated by the stress adaptor protein p66shc, a genetic determinant of life span in mammals, which regulates ROS metabolism, apoptosis, and cellular senescence. The aim of this study was to assess the relationship between intracellular oxidative stress levels with the incidence of embryo arrest and the expression of senescent-associated genes in embryos produced under different oxygen tensions. Embryos cultured under 20% oxygen conditions showed approximately 10-fold increase in oxidative stress, 2-fold increase in the percentage of 2- to 4-cell arrest, and significantly lower developmental capabilities compared to embryos cultured under a 5% oxygen environment. Quantification by real-time PCR and by semiquantitative immunofluorescence showed significantly higher p66shc mRNA and protein levels, respectively, in embryos cultured in 20% versus those cultured in 5% oxygen atmosphere. No significant changes in p53 mRNA and protein levels were detected among embryos derived from both oxygen tensions. Taken together, these results demonstrate that p66shc, but not p53, is significantly more abundant in an embryo population that exhibits higher frequencies of embryo arrest and quantities of intracellular ROS. These results further substantiate that p66shc and oxidative stress are associated with a p53-independent embryonic arrest event for in vitro-produced embryos.</description><identifier>ISSN: 0891-5849</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2007.01.018</identifier><language>eng</language><ispartof>Free radical biology &amp; medicine, 2007-04, Vol.42 (8), p.1201-1210</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Favetta, Laura A</creatorcontrib><creatorcontrib>St John, Elizabeth J</creatorcontrib><creatorcontrib>King, W Allan</creatorcontrib><creatorcontrib>Betts, Dean H</creatorcontrib><title>High levels of p66 and intracellular ROS in permanently arrested early embryos</title><title>Free radical biology &amp; medicine</title><description>A high incidence of permanent embryo arrest occurs during the first week of in vitro development. We hypothesize that this developmental arrest event is regulated by the stress adaptor protein p66shc, a genetic determinant of life span in mammals, which regulates ROS metabolism, apoptosis, and cellular senescence. The aim of this study was to assess the relationship between intracellular oxidative stress levels with the incidence of embryo arrest and the expression of senescent-associated genes in embryos produced under different oxygen tensions. Embryos cultured under 20% oxygen conditions showed approximately 10-fold increase in oxidative stress, 2-fold increase in the percentage of 2- to 4-cell arrest, and significantly lower developmental capabilities compared to embryos cultured under a 5% oxygen environment. Quantification by real-time PCR and by semiquantitative immunofluorescence showed significantly higher p66shc mRNA and protein levels, respectively, in embryos cultured in 20% versus those cultured in 5% oxygen atmosphere. No significant changes in p53 mRNA and protein levels were detected among embryos derived from both oxygen tensions. Taken together, these results demonstrate that p66shc, but not p53, is significantly more abundant in an embryo population that exhibits higher frequencies of embryo arrest and quantities of intracellular ROS. These results further substantiate that p66shc and oxidative stress are associated with a p53-independent embryonic arrest event for in vitro-produced embryos.</description><issn>0891-5849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotjktLxEAQhOeg4Pr4DwOCt8Se9HYyOcqirrC44OO8dDIdzTJ5OJMV9t8bUSgoqg5Vn1LXBlIDJr_dp00QCeyqdujEpRlAkYKZZU_UAmxpErLL8kydx7gHgCWhXajndfvxqb18i496aPSY55p7p9t-ClyL9wfPQb9sX-dGjxI67qWf_FFzCBIncVo4zFG6KhyHeKlOG_ZRrv79Qr0_3L-t1slm-_i0utsko7H5lBiLJYOpiArEmgqb1YZzrNiWSIgsjLWgdRatuNxRTU0BDRpHBROVBV6om7_dMQxfhxlk17XxF3fGGw5xlwEBZfPND3ulVA8</recordid><startdate>20070415</startdate><enddate>20070415</enddate><creator>Favetta, Laura A</creator><creator>St John, Elizabeth J</creator><creator>King, W Allan</creator><creator>Betts, Dean H</creator><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20070415</creationdate><title>High levels of p66 and intracellular ROS in permanently arrested early embryos</title><author>Favetta, Laura A ; St John, Elizabeth J ; King, W Allan ; Betts, Dean H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-1839a01b55733c5782c1a63ba893533aea3ce38d838ed6d5c5f70f31d57a55973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Favetta, Laura A</creatorcontrib><creatorcontrib>St John, Elizabeth J</creatorcontrib><creatorcontrib>King, W Allan</creatorcontrib><creatorcontrib>Betts, Dean H</creatorcontrib><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Favetta, Laura A</au><au>St John, Elizabeth J</au><au>King, W Allan</au><au>Betts, Dean H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High levels of p66 and intracellular ROS in permanently arrested early embryos</atitle><jtitle>Free radical biology &amp; medicine</jtitle><date>2007-04-15</date><risdate>2007</risdate><volume>42</volume><issue>8</issue><spage>1201</spage><epage>1210</epage><pages>1201-1210</pages><issn>0891-5849</issn><abstract>A high incidence of permanent embryo arrest occurs during the first week of in vitro development. We hypothesize that this developmental arrest event is regulated by the stress adaptor protein p66shc, a genetic determinant of life span in mammals, which regulates ROS metabolism, apoptosis, and cellular senescence. The aim of this study was to assess the relationship between intracellular oxidative stress levels with the incidence of embryo arrest and the expression of senescent-associated genes in embryos produced under different oxygen tensions. Embryos cultured under 20% oxygen conditions showed approximately 10-fold increase in oxidative stress, 2-fold increase in the percentage of 2- to 4-cell arrest, and significantly lower developmental capabilities compared to embryos cultured under a 5% oxygen environment. Quantification by real-time PCR and by semiquantitative immunofluorescence showed significantly higher p66shc mRNA and protein levels, respectively, in embryos cultured in 20% versus those cultured in 5% oxygen atmosphere. No significant changes in p53 mRNA and protein levels were detected among embryos derived from both oxygen tensions. Taken together, these results demonstrate that p66shc, but not p53, is significantly more abundant in an embryo population that exhibits higher frequencies of embryo arrest and quantities of intracellular ROS. These results further substantiate that p66shc and oxidative stress are associated with a p53-independent embryonic arrest event for in vitro-produced embryos.</abstract><doi>10.1016/j.freeradbiomed.2007.01.018</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2007-04, Vol.42 (8), p.1201-1210
issn 0891-5849
language eng
recordid cdi_proquest_miscellaneous_20505218
source Elsevier ScienceDirect Journals
title High levels of p66 and intracellular ROS in permanently arrested early embryos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20levels%20of%20p66%20and%20intracellular%20ROS%20in%20permanently%20arrested%20early%20embryos&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Favetta,%20Laura%20A&rft.date=2007-04-15&rft.volume=42&rft.issue=8&rft.spage=1201&rft.epage=1210&rft.pages=1201-1210&rft.issn=0891-5849&rft_id=info:doi/10.1016/j.freeradbiomed.2007.01.018&rft_dat=%3Cproquest%3E20505218%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20505218&rft_id=info:pmid/&rfr_iscdi=true