Conjunctive Coding in an Evolved Spiking Model of Retrosplenial Cortex

Retrosplenial cortex (RSC) is an association cortex supporting spatial navigation and memory. However, critical issues remain concerning the forms by which its ensemble spiking patterns register spatial relationships that are difficult for experimental techniques to fully address. We therefore appli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavioral neuroscience 2018-10, Vol.132 (5), p.430-452
Hauptverfasser: Rounds, Emily L., Alexander, Andrew S., Nitz, Douglas A., Krichmar, Jeffrey L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 452
container_issue 5
container_start_page 430
container_title Behavioral neuroscience
container_volume 132
creator Rounds, Emily L.
Alexander, Andrew S.
Nitz, Douglas A.
Krichmar, Jeffrey L.
description Retrosplenial cortex (RSC) is an association cortex supporting spatial navigation and memory. However, critical issues remain concerning the forms by which its ensemble spiking patterns register spatial relationships that are difficult for experimental techniques to fully address. We therefore applied an evolutionary algorithmic optimization technique to create spiking neural network models that matched electrophysiologically observed spiking dynamics in rat RSC neuronal ensembles. Virtual experiments conducted on the evolved networks revealed a mixed selectivity coding capability that was not built into the optimization method, but instead emerged as a consequence of replicating biological firing patterns. The experiments reveal several important outcomes of mixed selectivity that may subserve flexible navigation and spatial representation: (a) robustness to loss of specific inputs, (b) immediate and stable encoding of novel routes and route locations, (c) automatic resolution of input variable conflicts, and (d) dynamic coding that allows rapid adaptation to changing task demands without retraining. These findings suggest that biological retrosplenial cortex can generate unique, first-trial, conjunctive encodings of spatial positions and actions that can be used by downstream brain regions for navigation and path integration. Moreover, these results are consistent with the proposed role for the RSC in the transformation of representations between reference frames and navigation strategy deployment. Finally, the specific modeling framework used for evolving synthetic retrosplenial networks represents an important advance for computational modeling by which synthetic neural networks can encapsulate, describe, and predict the behavior of neural circuits at multiple levels of function.
doi_str_mv 10.1037/bne0000236
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2049943989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125736345</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-2b93cd3d7b7f79eaa19a2c62e632c005f7af965fa7dae09ede40537674bc1dda3</originalsourceid><addsrcrecordid>eNp90UuLFDEQB_DgA3dc9-IHkAYvIrYmqTw6x2XYVWFF8HEO6aRaeuxJ2qR7cL-9GWZV8GAuBeFXfyopQp4y-ppR0G_6iLQeDuoe2TADpqW0E_fJhdEdEwCd4dU9IBuqQbaaCnFGHpeyqz2CCvmInHHTKQDNNuR6m-JujX4ZD9hsUxjjt2aMjYvN1SFNBwzN53n8frz9kAJOTRqaT7jkVOYJ4-im2pMX_PmEPBzcVPDirp6Tr9dXX7bv2puPb99vL29aBx1dWt4b8AGC7vWgDTrHjONecVTAPaVy0G4wSg5OB4fUYEBBJWilRe9ZCA7OyYtT7pzTjxXLYvdj8ThNLmJai-VUGCPAdKbS5__QXVpzrNNZzrjUoEDI_yoqKVOsU6qqlyfl68tLxsHOedy7fGsZtced2L87qfjZXeTa7zH8ob8_vYJXJ-BmZ-dy611eRj9h8WvOGJdjmGXArbQCKPwC7MmSPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050161866</pqid></control><display><type>article</type><title>Conjunctive Coding in an Evolved Spiking Model of Retrosplenial Cortex</title><source>MEDLINE</source><source>APA PsycARTICLES</source><creator>Rounds, Emily L. ; Alexander, Andrew S. ; Nitz, Douglas A. ; Krichmar, Jeffrey L.</creator><contributor>Stern, Chantal E ; Burwell, Rebecca D ; Bucci, David J</contributor><creatorcontrib>Rounds, Emily L. ; Alexander, Andrew S. ; Nitz, Douglas A. ; Krichmar, Jeffrey L. ; Stern, Chantal E ; Burwell, Rebecca D ; Bucci, David J</creatorcontrib><description>Retrosplenial cortex (RSC) is an association cortex supporting spatial navigation and memory. However, critical issues remain concerning the forms by which its ensemble spiking patterns register spatial relationships that are difficult for experimental techniques to fully address. We therefore applied an evolutionary algorithmic optimization technique to create spiking neural network models that matched electrophysiologically observed spiking dynamics in rat RSC neuronal ensembles. Virtual experiments conducted on the evolved networks revealed a mixed selectivity coding capability that was not built into the optimization method, but instead emerged as a consequence of replicating biological firing patterns. The experiments reveal several important outcomes of mixed selectivity that may subserve flexible navigation and spatial representation: (a) robustness to loss of specific inputs, (b) immediate and stable encoding of novel routes and route locations, (c) automatic resolution of input variable conflicts, and (d) dynamic coding that allows rapid adaptation to changing task demands without retraining. These findings suggest that biological retrosplenial cortex can generate unique, first-trial, conjunctive encodings of spatial positions and actions that can be used by downstream brain regions for navigation and path integration. Moreover, these results are consistent with the proposed role for the RSC in the transformation of representations between reference frames and navigation strategy deployment. Finally, the specific modeling framework used for evolving synthetic retrosplenial networks represents an important advance for computational modeling by which synthetic neural networks can encapsulate, describe, and predict the behavior of neural circuits at multiple levels of function.</description><identifier>ISSN: 0735-7044</identifier><identifier>ISBN: 9781433892103</identifier><identifier>ISBN: 1433892103</identifier><identifier>EISSN: 1939-0084</identifier><identifier>DOI: 10.1037/bne0000236</identifier><identifier>PMID: 29863371</identifier><language>eng</language><publisher>United States: American Psychological Association</publisher><subject>Action Potentials ; Algorithms ; Animal ; Animal models ; Animals ; Cerebral Cortex ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Computational Modeling ; Computational neuroscience ; Excitatory Synapse ; Experiential learning ; Firing pattern ; Genetic transformation ; Male ; Memory ; Models, Neurological ; Navigation behavior ; Neural coding ; Neural Networks ; Neurons - cytology ; Neurons - physiology ; Neurosciences ; Rats ; Rats, Long-Evans ; Spatial Ability ; Spatial memory ; Spatial Navigation - physiology ; Spiking Neural Networks ; Theory of Evolution</subject><ispartof>Behavioral neuroscience, 2018-10, Vol.132 (5), p.430-452</ispartof><rights>2018 American Psychological Association</rights><rights>2018, American Psychological Association</rights><rights>Copyright American Psychological Association Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-2b93cd3d7b7f79eaa19a2c62e632c005f7af965fa7dae09ede40537674bc1dda3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29863371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Stern, Chantal E</contributor><contributor>Burwell, Rebecca D</contributor><contributor>Bucci, David J</contributor><creatorcontrib>Rounds, Emily L.</creatorcontrib><creatorcontrib>Alexander, Andrew S.</creatorcontrib><creatorcontrib>Nitz, Douglas A.</creatorcontrib><creatorcontrib>Krichmar, Jeffrey L.</creatorcontrib><title>Conjunctive Coding in an Evolved Spiking Model of Retrosplenial Cortex</title><title>Behavioral neuroscience</title><addtitle>Behav Neurosci</addtitle><description>Retrosplenial cortex (RSC) is an association cortex supporting spatial navigation and memory. However, critical issues remain concerning the forms by which its ensemble spiking patterns register spatial relationships that are difficult for experimental techniques to fully address. We therefore applied an evolutionary algorithmic optimization technique to create spiking neural network models that matched electrophysiologically observed spiking dynamics in rat RSC neuronal ensembles. Virtual experiments conducted on the evolved networks revealed a mixed selectivity coding capability that was not built into the optimization method, but instead emerged as a consequence of replicating biological firing patterns. The experiments reveal several important outcomes of mixed selectivity that may subserve flexible navigation and spatial representation: (a) robustness to loss of specific inputs, (b) immediate and stable encoding of novel routes and route locations, (c) automatic resolution of input variable conflicts, and (d) dynamic coding that allows rapid adaptation to changing task demands without retraining. These findings suggest that biological retrosplenial cortex can generate unique, first-trial, conjunctive encodings of spatial positions and actions that can be used by downstream brain regions for navigation and path integration. Moreover, these results are consistent with the proposed role for the RSC in the transformation of representations between reference frames and navigation strategy deployment. Finally, the specific modeling framework used for evolving synthetic retrosplenial networks represents an important advance for computational modeling by which synthetic neural networks can encapsulate, describe, and predict the behavior of neural circuits at multiple levels of function.</description><subject>Action Potentials</subject><subject>Algorithms</subject><subject>Animal</subject><subject>Animal models</subject><subject>Animals</subject><subject>Cerebral Cortex</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Computational Modeling</subject><subject>Computational neuroscience</subject><subject>Excitatory Synapse</subject><subject>Experiential learning</subject><subject>Firing pattern</subject><subject>Genetic transformation</subject><subject>Male</subject><subject>Memory</subject><subject>Models, Neurological</subject><subject>Navigation behavior</subject><subject>Neural coding</subject><subject>Neural Networks</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Spatial Ability</subject><subject>Spatial memory</subject><subject>Spatial Navigation - physiology</subject><subject>Spiking Neural Networks</subject><subject>Theory of Evolution</subject><issn>0735-7044</issn><issn>1939-0084</issn><isbn>9781433892103</isbn><isbn>1433892103</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90UuLFDEQB_DgA3dc9-IHkAYvIrYmqTw6x2XYVWFF8HEO6aRaeuxJ2qR7cL-9GWZV8GAuBeFXfyopQp4y-ppR0G_6iLQeDuoe2TADpqW0E_fJhdEdEwCd4dU9IBuqQbaaCnFGHpeyqz2CCvmInHHTKQDNNuR6m-JujX4ZD9hsUxjjt2aMjYvN1SFNBwzN53n8frz9kAJOTRqaT7jkVOYJ4-im2pMX_PmEPBzcVPDirp6Tr9dXX7bv2puPb99vL29aBx1dWt4b8AGC7vWgDTrHjONecVTAPaVy0G4wSg5OB4fUYEBBJWilRe9ZCA7OyYtT7pzTjxXLYvdj8ThNLmJai-VUGCPAdKbS5__QXVpzrNNZzrjUoEDI_yoqKVOsU6qqlyfl68tLxsHOedy7fGsZtced2L87qfjZXeTa7zH8ob8_vYJXJ-BmZ-dy611eRj9h8WvOGJdjmGXArbQCKPwC7MmSPw</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Rounds, Emily L.</creator><creator>Alexander, Andrew S.</creator><creator>Nitz, Douglas A.</creator><creator>Krichmar, Jeffrey L.</creator><general>American Psychological Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201810</creationdate><title>Conjunctive Coding in an Evolved Spiking Model of Retrosplenial Cortex</title><author>Rounds, Emily L. ; Alexander, Andrew S. ; Nitz, Douglas A. ; Krichmar, Jeffrey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-2b93cd3d7b7f79eaa19a2c62e632c005f7af965fa7dae09ede40537674bc1dda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Action Potentials</topic><topic>Algorithms</topic><topic>Animal</topic><topic>Animal models</topic><topic>Animals</topic><topic>Cerebral Cortex</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Computational Modeling</topic><topic>Computational neuroscience</topic><topic>Excitatory Synapse</topic><topic>Experiential learning</topic><topic>Firing pattern</topic><topic>Genetic transformation</topic><topic>Male</topic><topic>Memory</topic><topic>Models, Neurological</topic><topic>Navigation behavior</topic><topic>Neural coding</topic><topic>Neural Networks</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Spatial Ability</topic><topic>Spatial memory</topic><topic>Spatial Navigation - physiology</topic><topic>Spiking Neural Networks</topic><topic>Theory of Evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rounds, Emily L.</creatorcontrib><creatorcontrib>Alexander, Andrew S.</creatorcontrib><creatorcontrib>Nitz, Douglas A.</creatorcontrib><creatorcontrib>Krichmar, Jeffrey L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest One Psychology</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Behavioral neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rounds, Emily L.</au><au>Alexander, Andrew S.</au><au>Nitz, Douglas A.</au><au>Krichmar, Jeffrey L.</au><au>Stern, Chantal E</au><au>Burwell, Rebecca D</au><au>Bucci, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjunctive Coding in an Evolved Spiking Model of Retrosplenial Cortex</atitle><jtitle>Behavioral neuroscience</jtitle><addtitle>Behav Neurosci</addtitle><date>2018-10</date><risdate>2018</risdate><volume>132</volume><issue>5</issue><spage>430</spage><epage>452</epage><pages>430-452</pages><issn>0735-7044</issn><eissn>1939-0084</eissn><isbn>9781433892103</isbn><isbn>1433892103</isbn><abstract>Retrosplenial cortex (RSC) is an association cortex supporting spatial navigation and memory. However, critical issues remain concerning the forms by which its ensemble spiking patterns register spatial relationships that are difficult for experimental techniques to fully address. We therefore applied an evolutionary algorithmic optimization technique to create spiking neural network models that matched electrophysiologically observed spiking dynamics in rat RSC neuronal ensembles. Virtual experiments conducted on the evolved networks revealed a mixed selectivity coding capability that was not built into the optimization method, but instead emerged as a consequence of replicating biological firing patterns. The experiments reveal several important outcomes of mixed selectivity that may subserve flexible navigation and spatial representation: (a) robustness to loss of specific inputs, (b) immediate and stable encoding of novel routes and route locations, (c) automatic resolution of input variable conflicts, and (d) dynamic coding that allows rapid adaptation to changing task demands without retraining. These findings suggest that biological retrosplenial cortex can generate unique, first-trial, conjunctive encodings of spatial positions and actions that can be used by downstream brain regions for navigation and path integration. Moreover, these results are consistent with the proposed role for the RSC in the transformation of representations between reference frames and navigation strategy deployment. Finally, the specific modeling framework used for evolving synthetic retrosplenial networks represents an important advance for computational modeling by which synthetic neural networks can encapsulate, describe, and predict the behavior of neural circuits at multiple levels of function.</abstract><cop>United States</cop><pub>American Psychological Association</pub><pmid>29863371</pmid><doi>10.1037/bne0000236</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-7044
ispartof Behavioral neuroscience, 2018-10, Vol.132 (5), p.430-452
issn 0735-7044
1939-0084
language eng
recordid cdi_proquest_miscellaneous_2049943989
source MEDLINE; APA PsycARTICLES
subjects Action Potentials
Algorithms
Animal
Animal models
Animals
Cerebral Cortex
Cerebral Cortex - cytology
Cerebral Cortex - physiology
Computational Modeling
Computational neuroscience
Excitatory Synapse
Experiential learning
Firing pattern
Genetic transformation
Male
Memory
Models, Neurological
Navigation behavior
Neural coding
Neural Networks
Neurons - cytology
Neurons - physiology
Neurosciences
Rats
Rats, Long-Evans
Spatial Ability
Spatial memory
Spatial Navigation - physiology
Spiking Neural Networks
Theory of Evolution
title Conjunctive Coding in an Evolved Spiking Model of Retrosplenial Cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjunctive%20Coding%20in%20an%20Evolved%20Spiking%20Model%20of%20Retrosplenial%20Cortex&rft.jtitle=Behavioral%20neuroscience&rft.au=Rounds,%20Emily%20L.&rft.date=2018-10&rft.volume=132&rft.issue=5&rft.spage=430&rft.epage=452&rft.pages=430-452&rft.issn=0735-7044&rft.eissn=1939-0084&rft.isbn=9781433892103&rft.isbn_list=1433892103&rft_id=info:doi/10.1037/bne0000236&rft_dat=%3Cproquest_cross%3E2125736345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2050161866&rft_id=info:pmid/29863371&rfr_iscdi=true