Review of Systems Biology Simulation Tools for Translational Research
Systems biology models and simulation tools are critical components for bridging molecular biology with predictive medicine. We report a systematic comparison of popular simulation tools, including CellDesigner, COPASI and VirtualCell, to facilitate translational research in genomics, proteomics and...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 365 |
---|---|
container_issue | |
container_start_page | 358 |
container_title | |
container_volume | 7 |
creator | Freedenberg, M. Kaddi, C. Quo, C.F. Wang, M.D. Coulter, W.H. |
description | Systems biology models and simulation tools are critical components for bridging molecular biology with predictive medicine. We report a systematic comparison of popular simulation tools, including CellDesigner, COPASI and VirtualCell, to facilitate translational research in genomics, proteomics and systems biology. Different tools evaluating the same model may produce dissimilar results. This inconsistency is a roadblock to developing patient-customized disease progression models which reduce uncertainty in clinical decisions. We implement existing molecular-level SBML and CellML and compare simulation results with published data. Preliminary results suggest some tools perform better in terms of numerical stability to determine true model behavior. Furthermore, we uncover several worrying issues: (1) disparities between tools in terms of solver algorithms and language format, (2) lack of interactivity between users and tools, (3) lack of standardization for systems biology modeling languages and (4) need for models addressing specific pressing clinical objectives such as cancer disease progression. |
doi_str_mv | 10.1109/BIBE.2007.4375588 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_20499354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4375588</ieee_id><sourcerecordid>20499354</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-ca71085234e16a482431421c8bd75adda5b1f6dccba572dd7a0030ae786f2ba73</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdEUGt_gHjZk7fU_cxujqbEWigIbT2HN8kbXdlkazZV-u8tpHMZGB6GYQh54GzBOcue83VeLARjZqGk0draK3LHlVCKa5bZGzKP8ZudpbTimbglxRZ_Hf7R0NLdKY7YRZq74MPnie5cd_QwutDTfQg-0jYMdD9AH6cUPN1iRBjqr3ty3YKPOL_4jHy8FvvlW7J5X62XL5vECZaOSQ2GM6uFVMhTUFYoed7Ga1s1RkPTgK54mzZ1XYE2omkMMCYZoLFpKyowckaept7DEH6OGMeyc7FG76HHcIylYCrLpFZn8HECHSKWh8F1MJzKyyXyH6ooVzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>20499354</pqid></control><display><type>conference_proceeding</type><title>Review of Systems Biology Simulation Tools for Translational Research</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Freedenberg, M. ; Kaddi, C. ; Quo, C.F. ; Wang, M.D. ; Coulter, W.H.</creator><creatorcontrib>Freedenberg, M. ; Kaddi, C. ; Quo, C.F. ; Wang, M.D. ; Coulter, W.H.</creatorcontrib><description>Systems biology models and simulation tools are critical components for bridging molecular biology with predictive medicine. We report a systematic comparison of popular simulation tools, including CellDesigner, COPASI and VirtualCell, to facilitate translational research in genomics, proteomics and systems biology. Different tools evaluating the same model may produce dissimilar results. This inconsistency is a roadblock to developing patient-customized disease progression models which reduce uncertainty in clinical decisions. We implement existing molecular-level SBML and CellML and compare simulation results with published data. Preliminary results suggest some tools perform better in terms of numerical stability to determine true model behavior. Furthermore, we uncover several worrying issues: (1) disparities between tools in terms of solver algorithms and language format, (2) lack of interactivity between users and tools, (3) lack of standardization for systems biology modeling languages and (4) need for models addressing specific pressing clinical objectives such as cancer disease progression.</description><identifier>ISBN: 1424415098</identifier><identifier>ISBN: 9781424415090</identifier><identifier>DOI: 10.1109/BIBE.2007.4375588</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Biological system modeling ; Cells (biology) ; Computational biology ; Diseases ; Genomics ; Medical simulation ; Predictive models ; simulation tools ; Systematics ; Systems biology ; usability</subject><ispartof>2007 IEEE 7th International Symposium on BioInformatics and BioEngineering, 2007, Vol.7, p.358-365</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4375588$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4375588$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Freedenberg, M.</creatorcontrib><creatorcontrib>Kaddi, C.</creatorcontrib><creatorcontrib>Quo, C.F.</creatorcontrib><creatorcontrib>Wang, M.D.</creatorcontrib><creatorcontrib>Coulter, W.H.</creatorcontrib><title>Review of Systems Biology Simulation Tools for Translational Research</title><title>2007 IEEE 7th International Symposium on BioInformatics and BioEngineering</title><addtitle>BIBE</addtitle><description>Systems biology models and simulation tools are critical components for bridging molecular biology with predictive medicine. We report a systematic comparison of popular simulation tools, including CellDesigner, COPASI and VirtualCell, to facilitate translational research in genomics, proteomics and systems biology. Different tools evaluating the same model may produce dissimilar results. This inconsistency is a roadblock to developing patient-customized disease progression models which reduce uncertainty in clinical decisions. We implement existing molecular-level SBML and CellML and compare simulation results with published data. Preliminary results suggest some tools perform better in terms of numerical stability to determine true model behavior. Furthermore, we uncover several worrying issues: (1) disparities between tools in terms of solver algorithms and language format, (2) lack of interactivity between users and tools, (3) lack of standardization for systems biology modeling languages and (4) need for models addressing specific pressing clinical objectives such as cancer disease progression.</description><subject>Bioinformatics</subject><subject>Biological system modeling</subject><subject>Cells (biology)</subject><subject>Computational biology</subject><subject>Diseases</subject><subject>Genomics</subject><subject>Medical simulation</subject><subject>Predictive models</subject><subject>simulation tools</subject><subject>Systematics</subject><subject>Systems biology</subject><subject>usability</subject><isbn>1424415098</isbn><isbn>9781424415090</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1Lw0AYhBdEUGt_gHjZk7fU_cxujqbEWigIbT2HN8kbXdlkazZV-u8tpHMZGB6GYQh54GzBOcue83VeLARjZqGk0draK3LHlVCKa5bZGzKP8ZudpbTimbglxRZ_Hf7R0NLdKY7YRZq74MPnie5cd_QwutDTfQg-0jYMdD9AH6cUPN1iRBjqr3ty3YKPOL_4jHy8FvvlW7J5X62XL5vECZaOSQ2GM6uFVMhTUFYoed7Ga1s1RkPTgK54mzZ1XYE2omkMMCYZoLFpKyowckaept7DEH6OGMeyc7FG76HHcIylYCrLpFZn8HECHSKWh8F1MJzKyyXyH6ooVzA</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Freedenberg, M.</creator><creator>Kaddi, C.</creator><creator>Quo, C.F.</creator><creator>Wang, M.D.</creator><creator>Coulter, W.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20070101</creationdate><title>Review of Systems Biology Simulation Tools for Translational Research</title><author>Freedenberg, M. ; Kaddi, C. ; Quo, C.F. ; Wang, M.D. ; Coulter, W.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-ca71085234e16a482431421c8bd75adda5b1f6dccba572dd7a0030ae786f2ba73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bioinformatics</topic><topic>Biological system modeling</topic><topic>Cells (biology)</topic><topic>Computational biology</topic><topic>Diseases</topic><topic>Genomics</topic><topic>Medical simulation</topic><topic>Predictive models</topic><topic>simulation tools</topic><topic>Systematics</topic><topic>Systems biology</topic><topic>usability</topic><toplevel>online_resources</toplevel><creatorcontrib>Freedenberg, M.</creatorcontrib><creatorcontrib>Kaddi, C.</creatorcontrib><creatorcontrib>Quo, C.F.</creatorcontrib><creatorcontrib>Wang, M.D.</creatorcontrib><creatorcontrib>Coulter, W.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Freedenberg, M.</au><au>Kaddi, C.</au><au>Quo, C.F.</au><au>Wang, M.D.</au><au>Coulter, W.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Review of Systems Biology Simulation Tools for Translational Research</atitle><btitle>2007 IEEE 7th International Symposium on BioInformatics and BioEngineering</btitle><stitle>BIBE</stitle><date>2007-01-01</date><risdate>2007</risdate><volume>7</volume><spage>358</spage><epage>365</epage><pages>358-365</pages><isbn>1424415098</isbn><isbn>9781424415090</isbn><abstract>Systems biology models and simulation tools are critical components for bridging molecular biology with predictive medicine. We report a systematic comparison of popular simulation tools, including CellDesigner, COPASI and VirtualCell, to facilitate translational research in genomics, proteomics and systems biology. Different tools evaluating the same model may produce dissimilar results. This inconsistency is a roadblock to developing patient-customized disease progression models which reduce uncertainty in clinical decisions. We implement existing molecular-level SBML and CellML and compare simulation results with published data. Preliminary results suggest some tools perform better in terms of numerical stability to determine true model behavior. Furthermore, we uncover several worrying issues: (1) disparities between tools in terms of solver algorithms and language format, (2) lack of interactivity between users and tools, (3) lack of standardization for systems biology modeling languages and (4) need for models addressing specific pressing clinical objectives such as cancer disease progression.</abstract><pub>IEEE</pub><doi>10.1109/BIBE.2007.4375588</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424415098 |
ispartof | 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering, 2007, Vol.7, p.358-365 |
issn | |
language | eng |
recordid | cdi_proquest_miscellaneous_20499354 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bioinformatics Biological system modeling Cells (biology) Computational biology Diseases Genomics Medical simulation Predictive models simulation tools Systematics Systems biology usability |
title | Review of Systems Biology Simulation Tools for Translational Research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Review%20of%20Systems%20Biology%20Simulation%20Tools%20for%20Translational%20Research&rft.btitle=2007%20IEEE%207th%20International%20Symposium%20on%20BioInformatics%20and%20BioEngineering&rft.au=Freedenberg,%20M.&rft.date=2007-01-01&rft.volume=7&rft.spage=358&rft.epage=365&rft.pages=358-365&rft.isbn=1424415098&rft.isbn_list=9781424415090&rft_id=info:doi/10.1109/BIBE.2007.4375588&rft_dat=%3Cproquest_6IE%3E20499354%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20499354&rft_id=info:pmid/&rft_ieee_id=4375588&rfr_iscdi=true |