Review of Systems Biology Simulation Tools for Translational Research

Systems biology models and simulation tools are critical components for bridging molecular biology with predictive medicine. We report a systematic comparison of popular simulation tools, including CellDesigner, COPASI and VirtualCell, to facilitate translational research in genomics, proteomics and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Freedenberg, M., Kaddi, C., Quo, C.F., Wang, M.D., Coulter, W.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue
container_start_page 358
container_title
container_volume 7
creator Freedenberg, M.
Kaddi, C.
Quo, C.F.
Wang, M.D.
Coulter, W.H.
description Systems biology models and simulation tools are critical components for bridging molecular biology with predictive medicine. We report a systematic comparison of popular simulation tools, including CellDesigner, COPASI and VirtualCell, to facilitate translational research in genomics, proteomics and systems biology. Different tools evaluating the same model may produce dissimilar results. This inconsistency is a roadblock to developing patient-customized disease progression models which reduce uncertainty in clinical decisions. We implement existing molecular-level SBML and CellML and compare simulation results with published data. Preliminary results suggest some tools perform better in terms of numerical stability to determine true model behavior. Furthermore, we uncover several worrying issues: (1) disparities between tools in terms of solver algorithms and language format, (2) lack of interactivity between users and tools, (3) lack of standardization for systems biology modeling languages and (4) need for models addressing specific pressing clinical objectives such as cancer disease progression.
doi_str_mv 10.1109/BIBE.2007.4375588
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_20499354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4375588</ieee_id><sourcerecordid>20499354</sourcerecordid><originalsourceid>FETCH-LOGICAL-i206t-ca71085234e16a482431421c8bd75adda5b1f6dccba572dd7a0030ae786f2ba73</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdEUGt_gHjZk7fU_cxujqbEWigIbT2HN8kbXdlkazZV-u8tpHMZGB6GYQh54GzBOcue83VeLARjZqGk0draK3LHlVCKa5bZGzKP8ZudpbTimbglxRZ_Hf7R0NLdKY7YRZq74MPnie5cd_QwutDTfQg-0jYMdD9AH6cUPN1iRBjqr3ty3YKPOL_4jHy8FvvlW7J5X62XL5vECZaOSQ2GM6uFVMhTUFYoed7Ga1s1RkPTgK54mzZ1XYE2omkMMCYZoLFpKyowckaept7DEH6OGMeyc7FG76HHcIylYCrLpFZn8HECHSKWh8F1MJzKyyXyH6ooVzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>20499354</pqid></control><display><type>conference_proceeding</type><title>Review of Systems Biology Simulation Tools for Translational Research</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Freedenberg, M. ; Kaddi, C. ; Quo, C.F. ; Wang, M.D. ; Coulter, W.H.</creator><creatorcontrib>Freedenberg, M. ; Kaddi, C. ; Quo, C.F. ; Wang, M.D. ; Coulter, W.H.</creatorcontrib><description>Systems biology models and simulation tools are critical components for bridging molecular biology with predictive medicine. We report a systematic comparison of popular simulation tools, including CellDesigner, COPASI and VirtualCell, to facilitate translational research in genomics, proteomics and systems biology. Different tools evaluating the same model may produce dissimilar results. This inconsistency is a roadblock to developing patient-customized disease progression models which reduce uncertainty in clinical decisions. We implement existing molecular-level SBML and CellML and compare simulation results with published data. Preliminary results suggest some tools perform better in terms of numerical stability to determine true model behavior. Furthermore, we uncover several worrying issues: (1) disparities between tools in terms of solver algorithms and language format, (2) lack of interactivity between users and tools, (3) lack of standardization for systems biology modeling languages and (4) need for models addressing specific pressing clinical objectives such as cancer disease progression.</description><identifier>ISBN: 1424415098</identifier><identifier>ISBN: 9781424415090</identifier><identifier>DOI: 10.1109/BIBE.2007.4375588</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Biological system modeling ; Cells (biology) ; Computational biology ; Diseases ; Genomics ; Medical simulation ; Predictive models ; simulation tools ; Systematics ; Systems biology ; usability</subject><ispartof>2007 IEEE 7th International Symposium on BioInformatics and BioEngineering, 2007, Vol.7, p.358-365</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4375588$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4375588$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Freedenberg, M.</creatorcontrib><creatorcontrib>Kaddi, C.</creatorcontrib><creatorcontrib>Quo, C.F.</creatorcontrib><creatorcontrib>Wang, M.D.</creatorcontrib><creatorcontrib>Coulter, W.H.</creatorcontrib><title>Review of Systems Biology Simulation Tools for Translational Research</title><title>2007 IEEE 7th International Symposium on BioInformatics and BioEngineering</title><addtitle>BIBE</addtitle><description>Systems biology models and simulation tools are critical components for bridging molecular biology with predictive medicine. We report a systematic comparison of popular simulation tools, including CellDesigner, COPASI and VirtualCell, to facilitate translational research in genomics, proteomics and systems biology. Different tools evaluating the same model may produce dissimilar results. This inconsistency is a roadblock to developing patient-customized disease progression models which reduce uncertainty in clinical decisions. We implement existing molecular-level SBML and CellML and compare simulation results with published data. Preliminary results suggest some tools perform better in terms of numerical stability to determine true model behavior. Furthermore, we uncover several worrying issues: (1) disparities between tools in terms of solver algorithms and language format, (2) lack of interactivity between users and tools, (3) lack of standardization for systems biology modeling languages and (4) need for models addressing specific pressing clinical objectives such as cancer disease progression.</description><subject>Bioinformatics</subject><subject>Biological system modeling</subject><subject>Cells (biology)</subject><subject>Computational biology</subject><subject>Diseases</subject><subject>Genomics</subject><subject>Medical simulation</subject><subject>Predictive models</subject><subject>simulation tools</subject><subject>Systematics</subject><subject>Systems biology</subject><subject>usability</subject><isbn>1424415098</isbn><isbn>9781424415090</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1Lw0AYhBdEUGt_gHjZk7fU_cxujqbEWigIbT2HN8kbXdlkazZV-u8tpHMZGB6GYQh54GzBOcue83VeLARjZqGk0draK3LHlVCKa5bZGzKP8ZudpbTimbglxRZ_Hf7R0NLdKY7YRZq74MPnie5cd_QwutDTfQg-0jYMdD9AH6cUPN1iRBjqr3ty3YKPOL_4jHy8FvvlW7J5X62XL5vECZaOSQ2GM6uFVMhTUFYoed7Ga1s1RkPTgK54mzZ1XYE2omkMMCYZoLFpKyowckaept7DEH6OGMeyc7FG76HHcIylYCrLpFZn8HECHSKWh8F1MJzKyyXyH6ooVzA</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Freedenberg, M.</creator><creator>Kaddi, C.</creator><creator>Quo, C.F.</creator><creator>Wang, M.D.</creator><creator>Coulter, W.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20070101</creationdate><title>Review of Systems Biology Simulation Tools for Translational Research</title><author>Freedenberg, M. ; Kaddi, C. ; Quo, C.F. ; Wang, M.D. ; Coulter, W.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i206t-ca71085234e16a482431421c8bd75adda5b1f6dccba572dd7a0030ae786f2ba73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bioinformatics</topic><topic>Biological system modeling</topic><topic>Cells (biology)</topic><topic>Computational biology</topic><topic>Diseases</topic><topic>Genomics</topic><topic>Medical simulation</topic><topic>Predictive models</topic><topic>simulation tools</topic><topic>Systematics</topic><topic>Systems biology</topic><topic>usability</topic><toplevel>online_resources</toplevel><creatorcontrib>Freedenberg, M.</creatorcontrib><creatorcontrib>Kaddi, C.</creatorcontrib><creatorcontrib>Quo, C.F.</creatorcontrib><creatorcontrib>Wang, M.D.</creatorcontrib><creatorcontrib>Coulter, W.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Freedenberg, M.</au><au>Kaddi, C.</au><au>Quo, C.F.</au><au>Wang, M.D.</au><au>Coulter, W.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Review of Systems Biology Simulation Tools for Translational Research</atitle><btitle>2007 IEEE 7th International Symposium on BioInformatics and BioEngineering</btitle><stitle>BIBE</stitle><date>2007-01-01</date><risdate>2007</risdate><volume>7</volume><spage>358</spage><epage>365</epage><pages>358-365</pages><isbn>1424415098</isbn><isbn>9781424415090</isbn><abstract>Systems biology models and simulation tools are critical components for bridging molecular biology with predictive medicine. We report a systematic comparison of popular simulation tools, including CellDesigner, COPASI and VirtualCell, to facilitate translational research in genomics, proteomics and systems biology. Different tools evaluating the same model may produce dissimilar results. This inconsistency is a roadblock to developing patient-customized disease progression models which reduce uncertainty in clinical decisions. We implement existing molecular-level SBML and CellML and compare simulation results with published data. Preliminary results suggest some tools perform better in terms of numerical stability to determine true model behavior. Furthermore, we uncover several worrying issues: (1) disparities between tools in terms of solver algorithms and language format, (2) lack of interactivity between users and tools, (3) lack of standardization for systems biology modeling languages and (4) need for models addressing specific pressing clinical objectives such as cancer disease progression.</abstract><pub>IEEE</pub><doi>10.1109/BIBE.2007.4375588</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424415098
ispartof 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering, 2007, Vol.7, p.358-365
issn
language eng
recordid cdi_proquest_miscellaneous_20499354
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bioinformatics
Biological system modeling
Cells (biology)
Computational biology
Diseases
Genomics
Medical simulation
Predictive models
simulation tools
Systematics
Systems biology
usability
title Review of Systems Biology Simulation Tools for Translational Research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Review%20of%20Systems%20Biology%20Simulation%20Tools%20for%20Translational%20Research&rft.btitle=2007%20IEEE%207th%20International%20Symposium%20on%20BioInformatics%20and%20BioEngineering&rft.au=Freedenberg,%20M.&rft.date=2007-01-01&rft.volume=7&rft.spage=358&rft.epage=365&rft.pages=358-365&rft.isbn=1424415098&rft.isbn_list=9781424415090&rft_id=info:doi/10.1109/BIBE.2007.4375588&rft_dat=%3Cproquest_6IE%3E20499354%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20499354&rft_id=info:pmid/&rft_ieee_id=4375588&rfr_iscdi=true