Oxygen delivery by blood determines the maximal VO sub(2) and work rate during whole body exercise in humans: in silico studies

It has been proposed by Saltin (J Exp Biol 115: 345-354, 1985) that oxygen delivery by blood is limiting for maximal work and oxygen consumption in humans during whole body exercise but not during single-muscle exercise. To test this prediction quantitatively, we developed a static (steady-state) co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2007-07, Vol.293 (1), p.H343-H353
Hauptverfasser: Liguzinski, Piotr, Korzeniewski, Bernard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been proposed by Saltin (J Exp Biol 115: 345-354, 1985) that oxygen delivery by blood is limiting for maximal work and oxygen consumption in humans during whole body exercise but not during single-muscle exercise. To test this prediction quantitatively, we developed a static (steady-state) computer model of oxygen transport to and within human skeletal muscle during single-muscle (quadriceps) exercise and whole body (cycling) exercise. The main system fluxes, namely cardiac output and oxygen consumption by muscle, are described as a function of the "primary" parameter: work rate. The model is broadly validated by comparison of computer simulations with various experimental data. In silico studies show that, when all other parameters and system properties are kept constant, an increase in the working muscle mass from 2.5 kg (single quadriceps) to 15 kg (two legs) causes, at some critical work intensity, a drop in oxygen concentration in muscle cells to (very near) zero, and therefore oxygen supply by blood limits maximal oxygen consumption and oxidative ATP production. Therefore, the maximal oxygen consumption per muscle mass is significantly higher during single-muscle exercise than during whole body exercise. The effect is brought about by a distribution of a limited amount of oxygen transported by blood in a greater working muscle mass during whole body exercise.
ISSN:0363-6143
1522-1563