Effective macroscopic transport parameters between parallel plates with constant concentration boundaries
A macroscopic transport model is developed, following the Taylor shear dispersion analysis procedure, for a 2D laminar shear flow between parallel plates possessing a constant specified concentration. This idealized geometry models flow with contaminant dissolution at pore-scale in a contaminant sou...
Gespeichert in:
Veröffentlicht in: | Advances in water resources 2007-09, Vol.30 (9), p.1993-2001 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2001 |
---|---|
container_issue | 9 |
container_start_page | 1993 |
container_title | Advances in water resources |
container_volume | 30 |
creator | Webster, D.R. Felton, D.S. Luo, J. |
description | A macroscopic transport model is developed, following the Taylor shear dispersion analysis procedure, for a 2D laminar shear flow between parallel plates possessing a constant specified concentration. This idealized geometry models flow with contaminant dissolution at pore-scale in a contaminant source zone and flow in a rock fracture with dissolving walls. We upscale a macroscopic transient transport model with effective transport coefficients of mean velocity, macroscopic dispersion, and first-order mass transfer rate. To validate the macroscopic model the mean concentration, covariance, and wall concentration gradient are compared to the results of numerical simulations of the advection–diffusion equation and the Graetz solution. Results indicate that in the presence of local-scale variations and constant concentration boundaries, the upscaled mean velocity and macrodispersion coefficient differ from those of the Taylor–Aris dispersion, and the mass transfer flux described by the first-order mass transfer model is larger than the diffusive mass flux from the constant wall. In addition, the upscaled first-order mass transfer coefficient in the macroscopic model depends only on the plate gap and diffusion coefficient. Therefore, the upscaled first-order mass transfer coefficient is independent of the mean velocity and travel distance, leading to a constant pore-scale Sherwood number of 12. By contrast, the effective Sherwood number determined by the diffusive mass flux is a function of the Peclet number for small Peclet number, and approaches a constant of 10.3 for large Peclet number. |
doi_str_mv | 10.1016/j.advwatres.2007.04.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20484270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030917080700067X</els_id><sourcerecordid>20484270</sourcerecordid><originalsourceid>FETCH-LOGICAL-a423t-b09bc32773d2d8369073bd33658af10012ea260dc50f777fefa2d023822a4fc83</originalsourceid><addsrcrecordid>eNqFkUtv1DAQgC0EEkvhNzQXuCUdPzZ2jlVVHlKlHqBna-KMwatsHGzvrvj3eNkKjkgjeWR98_Bnxq45dBx4f7PrcDqesCTKnQDQHagOQL1gG260aId-q1-yDUgYWq7BvGZvct4BgFFabFi4955cCUdq9uhSzC6uwTUl4ZLXmEqzYsI9FUq5GamciJY_V_NMc7POWCg3p1B-NC4uueBSzomjpTYoIS7NGA_LhClQfsteeZwzvXs-r9jTx_tvd5_bh8dPX-5uH1pUQpZ2hGF0UmgtJzEZ2Q-g5ThJ2W8Neg7ABaHoYXJb8FprTx7FBEIaIVB5Z-QV-3Dpu6b480C52H3IjuYZF4qHbAUoo4SGCuoLeH52TuTtmsIe0y_LwZ7V2p39q9ae1VpQtqqtle-fR2B2OPsqy4X8r9wMXPRmW7nrC-cxWvyeKvP0VQCX1b5QNSpxeyGoGjkGSja7QFXgFFL9FjvF8N9tfgNTFp-7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20484270</pqid></control><display><type>article</type><title>Effective macroscopic transport parameters between parallel plates with constant concentration boundaries</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Webster, D.R. ; Felton, D.S. ; Luo, J.</creator><creatorcontrib>Webster, D.R. ; Felton, D.S. ; Luo, J.</creatorcontrib><description>A macroscopic transport model is developed, following the Taylor shear dispersion analysis procedure, for a 2D laminar shear flow between parallel plates possessing a constant specified concentration. This idealized geometry models flow with contaminant dissolution at pore-scale in a contaminant source zone and flow in a rock fracture with dissolving walls. We upscale a macroscopic transient transport model with effective transport coefficients of mean velocity, macroscopic dispersion, and first-order mass transfer rate. To validate the macroscopic model the mean concentration, covariance, and wall concentration gradient are compared to the results of numerical simulations of the advection–diffusion equation and the Graetz solution. Results indicate that in the presence of local-scale variations and constant concentration boundaries, the upscaled mean velocity and macrodispersion coefficient differ from those of the Taylor–Aris dispersion, and the mass transfer flux described by the first-order mass transfer model is larger than the diffusive mass flux from the constant wall. In addition, the upscaled first-order mass transfer coefficient in the macroscopic model depends only on the plate gap and diffusion coefficient. Therefore, the upscaled first-order mass transfer coefficient is independent of the mean velocity and travel distance, leading to a constant pore-scale Sherwood number of 12. By contrast, the effective Sherwood number determined by the diffusive mass flux is a function of the Peclet number for small Peclet number, and approaches a constant of 10.3 for large Peclet number.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2007.04.004</identifier><identifier>CODEN: AWREDI</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>aquifers ; diffusion ; diffusive mass flux ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Graetz solution ; groundwater contamination ; groundwater flow ; hydrologic models ; Hydrology. Hydrogeology ; Macroscopic model ; macroscopic transient transport models ; Mass transfer ; mass transfer flux ; pollutants ; rock fracture ; Taylor–Aris dispersion ; Upscaling</subject><ispartof>Advances in water resources, 2007-09, Vol.30 (9), p.1993-2001</ispartof><rights>2007 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a423t-b09bc32773d2d8369073bd33658af10012ea260dc50f777fefa2d023822a4fc83</citedby><cites>FETCH-LOGICAL-a423t-b09bc32773d2d8369073bd33658af10012ea260dc50f777fefa2d023822a4fc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.advwatres.2007.04.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18912685$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Webster, D.R.</creatorcontrib><creatorcontrib>Felton, D.S.</creatorcontrib><creatorcontrib>Luo, J.</creatorcontrib><title>Effective macroscopic transport parameters between parallel plates with constant concentration boundaries</title><title>Advances in water resources</title><description>A macroscopic transport model is developed, following the Taylor shear dispersion analysis procedure, for a 2D laminar shear flow between parallel plates possessing a constant specified concentration. This idealized geometry models flow with contaminant dissolution at pore-scale in a contaminant source zone and flow in a rock fracture with dissolving walls. We upscale a macroscopic transient transport model with effective transport coefficients of mean velocity, macroscopic dispersion, and first-order mass transfer rate. To validate the macroscopic model the mean concentration, covariance, and wall concentration gradient are compared to the results of numerical simulations of the advection–diffusion equation and the Graetz solution. Results indicate that in the presence of local-scale variations and constant concentration boundaries, the upscaled mean velocity and macrodispersion coefficient differ from those of the Taylor–Aris dispersion, and the mass transfer flux described by the first-order mass transfer model is larger than the diffusive mass flux from the constant wall. In addition, the upscaled first-order mass transfer coefficient in the macroscopic model depends only on the plate gap and diffusion coefficient. Therefore, the upscaled first-order mass transfer coefficient is independent of the mean velocity and travel distance, leading to a constant pore-scale Sherwood number of 12. By contrast, the effective Sherwood number determined by the diffusive mass flux is a function of the Peclet number for small Peclet number, and approaches a constant of 10.3 for large Peclet number.</description><subject>aquifers</subject><subject>diffusion</subject><subject>diffusive mass flux</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Graetz solution</subject><subject>groundwater contamination</subject><subject>groundwater flow</subject><subject>hydrologic models</subject><subject>Hydrology. Hydrogeology</subject><subject>Macroscopic model</subject><subject>macroscopic transient transport models</subject><subject>Mass transfer</subject><subject>mass transfer flux</subject><subject>pollutants</subject><subject>rock fracture</subject><subject>Taylor–Aris dispersion</subject><subject>Upscaling</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAQgC0EEkvhNzQXuCUdPzZ2jlVVHlKlHqBna-KMwatsHGzvrvj3eNkKjkgjeWR98_Bnxq45dBx4f7PrcDqesCTKnQDQHagOQL1gG260aId-q1-yDUgYWq7BvGZvct4BgFFabFi4955cCUdq9uhSzC6uwTUl4ZLXmEqzYsI9FUq5GamciJY_V_NMc7POWCg3p1B-NC4uueBSzomjpTYoIS7NGA_LhClQfsteeZwzvXs-r9jTx_tvd5_bh8dPX-5uH1pUQpZ2hGF0UmgtJzEZ2Q-g5ThJ2W8Neg7ABaHoYXJb8FprTx7FBEIaIVB5Z-QV-3Dpu6b480C52H3IjuYZF4qHbAUoo4SGCuoLeH52TuTtmsIe0y_LwZ7V2p39q9ae1VpQtqqtle-fR2B2OPsqy4X8r9wMXPRmW7nrC-cxWvyeKvP0VQCX1b5QNSpxeyGoGjkGSja7QFXgFFL9FjvF8N9tfgNTFp-7</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Webster, D.R.</creator><creator>Felton, D.S.</creator><creator>Luo, J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20070901</creationdate><title>Effective macroscopic transport parameters between parallel plates with constant concentration boundaries</title><author>Webster, D.R. ; Felton, D.S. ; Luo, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a423t-b09bc32773d2d8369073bd33658af10012ea260dc50f777fefa2d023822a4fc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>aquifers</topic><topic>diffusion</topic><topic>diffusive mass flux</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Graetz solution</topic><topic>groundwater contamination</topic><topic>groundwater flow</topic><topic>hydrologic models</topic><topic>Hydrology. Hydrogeology</topic><topic>Macroscopic model</topic><topic>macroscopic transient transport models</topic><topic>Mass transfer</topic><topic>mass transfer flux</topic><topic>pollutants</topic><topic>rock fracture</topic><topic>Taylor–Aris dispersion</topic><topic>Upscaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webster, D.R.</creatorcontrib><creatorcontrib>Felton, D.S.</creatorcontrib><creatorcontrib>Luo, J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webster, D.R.</au><au>Felton, D.S.</au><au>Luo, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective macroscopic transport parameters between parallel plates with constant concentration boundaries</atitle><jtitle>Advances in water resources</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>30</volume><issue>9</issue><spage>1993</spage><epage>2001</epage><pages>1993-2001</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><coden>AWREDI</coden><abstract>A macroscopic transport model is developed, following the Taylor shear dispersion analysis procedure, for a 2D laminar shear flow between parallel plates possessing a constant specified concentration. This idealized geometry models flow with contaminant dissolution at pore-scale in a contaminant source zone and flow in a rock fracture with dissolving walls. We upscale a macroscopic transient transport model with effective transport coefficients of mean velocity, macroscopic dispersion, and first-order mass transfer rate. To validate the macroscopic model the mean concentration, covariance, and wall concentration gradient are compared to the results of numerical simulations of the advection–diffusion equation and the Graetz solution. Results indicate that in the presence of local-scale variations and constant concentration boundaries, the upscaled mean velocity and macrodispersion coefficient differ from those of the Taylor–Aris dispersion, and the mass transfer flux described by the first-order mass transfer model is larger than the diffusive mass flux from the constant wall. In addition, the upscaled first-order mass transfer coefficient in the macroscopic model depends only on the plate gap and diffusion coefficient. Therefore, the upscaled first-order mass transfer coefficient is independent of the mean velocity and travel distance, leading to a constant pore-scale Sherwood number of 12. By contrast, the effective Sherwood number determined by the diffusive mass flux is a function of the Peclet number for small Peclet number, and approaches a constant of 10.3 for large Peclet number.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2007.04.004</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0309-1708 |
ispartof | Advances in water resources, 2007-09, Vol.30 (9), p.1993-2001 |
issn | 0309-1708 1872-9657 |
language | eng |
recordid | cdi_proquest_miscellaneous_20484270 |
source | Elsevier ScienceDirect Journals Complete |
subjects | aquifers diffusion diffusive mass flux Earth sciences Earth, ocean, space Exact sciences and technology Graetz solution groundwater contamination groundwater flow hydrologic models Hydrology. Hydrogeology Macroscopic model macroscopic transient transport models Mass transfer mass transfer flux pollutants rock fracture Taylor–Aris dispersion Upscaling |
title | Effective macroscopic transport parameters between parallel plates with constant concentration boundaries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20macroscopic%20transport%20parameters%20between%20parallel%20plates%20with%20constant%20concentration%20boundaries&rft.jtitle=Advances%20in%20water%20resources&rft.au=Webster,%20D.R.&rft.date=2007-09-01&rft.volume=30&rft.issue=9&rft.spage=1993&rft.epage=2001&rft.pages=1993-2001&rft.issn=0309-1708&rft.eissn=1872-9657&rft.coden=AWREDI&rft_id=info:doi/10.1016/j.advwatres.2007.04.004&rft_dat=%3Cproquest_cross%3E20484270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20484270&rft_id=info:pmid/&rft_els_id=S030917080700067X&rfr_iscdi=true |