A control-volume finite-element method for three-dimensional multiphase basin modeling

In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine and petroleum geology 2009-04, Vol.26 (4), p.504-518
Hauptverfasser: Mello, Ulisses T., Rodrigues, José Roberto P., Rossa, André L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 518
container_issue 4
container_start_page 504
container_title Marine and petroleum geology
container_volume 26
creator Mello, Ulisses T.
Rodrigues, José Roberto P.
Rossa, André L.
description In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generation, multiphase fluid flow, and heat transfer in deforming porous media. These integrated processes possess a wide range of time-scales, indicating the need for implicit methods. In addition, sedimentary basins are geometrically complex environments, requiring unstructured tetrahedral meshes to adequately represent the problem realistically without the need for an excessive number of mesh elements. Here, we also present a general formulation for problems involving back-oil, thermal, or compositional models using overall component mass concentrations, and an arbitrary Lagrangian–Eulerian (ALE) formulation to deal with salt motion conservatively. The Newton method is used to solve the sparse Jacobian systems resulting from the linearization of the coupled non-linear PDEs for multiphase flow and energy transfer. These systems are solved with the generalized minimal residual method (GMRES) method with an incomplete lower–upper (ILU) preconditioner for faster inner iteration convergence rates. We applied this model to a sedimentary basin and we describe the results for this basin.
doi_str_mv 10.1016/j.marpetgeo.2009.01.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20481261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264817209000245</els_id><sourcerecordid>20481261</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-caab2fbd9deefa73ab24c6c17a22dcd07bf7bfb74f841fc9b36abf4f332e0c43</originalsourceid><addsrcrecordid>eNqFkM1KLDEQhYMoOP48g725d9djJenpdC8H8aoguBG3IZ1UnAzpZEwygm9_IyOzFQ4UVXxVhzqE3FBYUqD97XY5q7TD8o5xyQDGJdCq1QlZ0EHwtgPBT8kCWN-1AxXsnFzkvAUAMQJdkLd1o2MoKfr2M_r9jI11wRVs0eOMoTQzlk00jY2pKZuE2BpX59nFoHwz731xu43K2Ewqu9DM0aB34f2KnFnlM17_1Evy-u_-9e6xfX55eLpbP7eKj2NptVITs5MZDaJVgteu072mQjFmtAEx2apJdHboqNXjxHs12c5yzhB0xy_J38PZXYofe8xFzi5r9F4FjPssGXQDZT2toDiAOsWcE1q5S67m9iUpyO8Y5VYeY5TfMUqgVau6-efHQmWtvE0qaJeP64z2q4EPULn1gcP67qfDJLN2GDQal1AXaaL71es_4eWQcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20481261</pqid></control><display><type>article</type><title>A control-volume finite-element method for three-dimensional multiphase basin modeling</title><source>Elsevier ScienceDirect Journals</source><creator>Mello, Ulisses T. ; Rodrigues, José Roberto P. ; Rossa, André L.</creator><creatorcontrib>Mello, Ulisses T. ; Rodrigues, José Roberto P. ; Rossa, André L.</creatorcontrib><description>In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generation, multiphase fluid flow, and heat transfer in deforming porous media. These integrated processes possess a wide range of time-scales, indicating the need for implicit methods. In addition, sedimentary basins are geometrically complex environments, requiring unstructured tetrahedral meshes to adequately represent the problem realistically without the need for an excessive number of mesh elements. Here, we also present a general formulation for problems involving back-oil, thermal, or compositional models using overall component mass concentrations, and an arbitrary Lagrangian–Eulerian (ALE) formulation to deal with salt motion conservatively. The Newton method is used to solve the sparse Jacobian systems resulting from the linearization of the coupled non-linear PDEs for multiphase flow and energy transfer. These systems are solved with the generalized minimal residual method (GMRES) method with an incomplete lower–upper (ILU) preconditioner for faster inner iteration convergence rates. We applied this model to a sedimentary basin and we describe the results for this basin.</description><identifier>ISSN: 0264-8172</identifier><identifier>EISSN: 1873-4073</identifier><identifier>DOI: 10.1016/j.marpetgeo.2009.01.015</identifier><identifier>CODEN: MPEGD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Compaction ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hydrocarbons ; Marine ; Marine geology ; Multiphase porous media flow ; Numerical basin modeling ; Sedimentary rocks ; Three-dimensional tetrahedral</subject><ispartof>Marine and petroleum geology, 2009-04, Vol.26 (4), p.504-518</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-caab2fbd9deefa73ab24c6c17a22dcd07bf7bfb74f841fc9b36abf4f332e0c43</citedby><cites>FETCH-LOGICAL-a399t-caab2fbd9deefa73ab24c6c17a22dcd07bf7bfb74f841fc9b36abf4f332e0c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0264817209000245$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21658380$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mello, Ulisses T.</creatorcontrib><creatorcontrib>Rodrigues, José Roberto P.</creatorcontrib><creatorcontrib>Rossa, André L.</creatorcontrib><title>A control-volume finite-element method for three-dimensional multiphase basin modeling</title><title>Marine and petroleum geology</title><description>In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generation, multiphase fluid flow, and heat transfer in deforming porous media. These integrated processes possess a wide range of time-scales, indicating the need for implicit methods. In addition, sedimentary basins are geometrically complex environments, requiring unstructured tetrahedral meshes to adequately represent the problem realistically without the need for an excessive number of mesh elements. Here, we also present a general formulation for problems involving back-oil, thermal, or compositional models using overall component mass concentrations, and an arbitrary Lagrangian–Eulerian (ALE) formulation to deal with salt motion conservatively. The Newton method is used to solve the sparse Jacobian systems resulting from the linearization of the coupled non-linear PDEs for multiphase flow and energy transfer. These systems are solved with the generalized minimal residual method (GMRES) method with an incomplete lower–upper (ILU) preconditioner for faster inner iteration convergence rates. We applied this model to a sedimentary basin and we describe the results for this basin.</description><subject>Compaction</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydrocarbons</subject><subject>Marine</subject><subject>Marine geology</subject><subject>Multiphase porous media flow</subject><subject>Numerical basin modeling</subject><subject>Sedimentary rocks</subject><subject>Three-dimensional tetrahedral</subject><issn>0264-8172</issn><issn>1873-4073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KLDEQhYMoOP48g725d9djJenpdC8H8aoguBG3IZ1UnAzpZEwygm9_IyOzFQ4UVXxVhzqE3FBYUqD97XY5q7TD8o5xyQDGJdCq1QlZ0EHwtgPBT8kCWN-1AxXsnFzkvAUAMQJdkLd1o2MoKfr2M_r9jI11wRVs0eOMoTQzlk00jY2pKZuE2BpX59nFoHwz731xu43K2Ewqu9DM0aB34f2KnFnlM17_1Evy-u_-9e6xfX55eLpbP7eKj2NptVITs5MZDaJVgteu072mQjFmtAEx2apJdHboqNXjxHs12c5yzhB0xy_J38PZXYofe8xFzi5r9F4FjPssGXQDZT2toDiAOsWcE1q5S67m9iUpyO8Y5VYeY5TfMUqgVau6-efHQmWtvE0qaJeP64z2q4EPULn1gcP67qfDJLN2GDQal1AXaaL71es_4eWQcA</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Mello, Ulisses T.</creator><creator>Rodrigues, José Roberto P.</creator><creator>Rossa, André L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20090401</creationdate><title>A control-volume finite-element method for three-dimensional multiphase basin modeling</title><author>Mello, Ulisses T. ; Rodrigues, José Roberto P. ; Rossa, André L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-caab2fbd9deefa73ab24c6c17a22dcd07bf7bfb74f841fc9b36abf4f332e0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Compaction</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydrocarbons</topic><topic>Marine</topic><topic>Marine geology</topic><topic>Multiphase porous media flow</topic><topic>Numerical basin modeling</topic><topic>Sedimentary rocks</topic><topic>Three-dimensional tetrahedral</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mello, Ulisses T.</creatorcontrib><creatorcontrib>Rodrigues, José Roberto P.</creatorcontrib><creatorcontrib>Rossa, André L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Marine and petroleum geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mello, Ulisses T.</au><au>Rodrigues, José Roberto P.</au><au>Rossa, André L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A control-volume finite-element method for three-dimensional multiphase basin modeling</atitle><jtitle>Marine and petroleum geology</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>26</volume><issue>4</issue><spage>504</spage><epage>518</epage><pages>504-518</pages><issn>0264-8172</issn><eissn>1873-4073</eissn><coden>MPEGD8</coden><abstract>In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generation, multiphase fluid flow, and heat transfer in deforming porous media. These integrated processes possess a wide range of time-scales, indicating the need for implicit methods. In addition, sedimentary basins are geometrically complex environments, requiring unstructured tetrahedral meshes to adequately represent the problem realistically without the need for an excessive number of mesh elements. Here, we also present a general formulation for problems involving back-oil, thermal, or compositional models using overall component mass concentrations, and an arbitrary Lagrangian–Eulerian (ALE) formulation to deal with salt motion conservatively. The Newton method is used to solve the sparse Jacobian systems resulting from the linearization of the coupled non-linear PDEs for multiphase flow and energy transfer. These systems are solved with the generalized minimal residual method (GMRES) method with an incomplete lower–upper (ILU) preconditioner for faster inner iteration convergence rates. We applied this model to a sedimentary basin and we describe the results for this basin.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.marpetgeo.2009.01.015</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-8172
ispartof Marine and petroleum geology, 2009-04, Vol.26 (4), p.504-518
issn 0264-8172
1873-4073
language eng
recordid cdi_proquest_miscellaneous_20481261
source Elsevier ScienceDirect Journals
subjects Compaction
Earth sciences
Earth, ocean, space
Exact sciences and technology
Hydrocarbons
Marine
Marine geology
Multiphase porous media flow
Numerical basin modeling
Sedimentary rocks
Three-dimensional tetrahedral
title A control-volume finite-element method for three-dimensional multiphase basin modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20control-volume%20finite-element%20method%20for%20three-dimensional%20multiphase%20basin%20modeling&rft.jtitle=Marine%20and%20petroleum%20geology&rft.au=Mello,%20Ulisses%20T.&rft.date=2009-04-01&rft.volume=26&rft.issue=4&rft.spage=504&rft.epage=518&rft.pages=504-518&rft.issn=0264-8172&rft.eissn=1873-4073&rft.coden=MPEGD8&rft_id=info:doi/10.1016/j.marpetgeo.2009.01.015&rft_dat=%3Cproquest_cross%3E20481261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20481261&rft_id=info:pmid/&rft_els_id=S0264817209000245&rfr_iscdi=true