A control-volume finite-element method for three-dimensional multiphase basin modeling
In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generati...
Gespeichert in:
Veröffentlicht in: | Marine and petroleum geology 2009-04, Vol.26 (4), p.504-518 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 518 |
---|---|
container_issue | 4 |
container_start_page | 504 |
container_title | Marine and petroleum geology |
container_volume | 26 |
creator | Mello, Ulisses T. Rodrigues, José Roberto P. Rossa, André L. |
description | In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generation, multiphase fluid flow, and heat transfer in deforming porous media.
These integrated processes possess a wide range of time-scales, indicating the need for implicit methods. In addition, sedimentary basins are geometrically complex environments, requiring unstructured tetrahedral meshes to adequately represent the problem realistically without the need for an excessive number of mesh elements. Here, we also present a general formulation for problems involving back-oil, thermal, or compositional models using overall component mass concentrations, and an arbitrary Lagrangian–Eulerian (ALE) formulation to deal with salt motion conservatively. The Newton method is used to solve the sparse Jacobian systems resulting from the linearization of the coupled non-linear PDEs for multiphase flow and energy transfer. These systems are solved with the generalized minimal residual method (GMRES) method with an incomplete lower–upper (ILU) preconditioner for faster inner iteration convergence rates. We applied this model to a sedimentary basin and we describe the results for this basin. |
doi_str_mv | 10.1016/j.marpetgeo.2009.01.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20481261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264817209000245</els_id><sourcerecordid>20481261</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-caab2fbd9deefa73ab24c6c17a22dcd07bf7bfb74f841fc9b36abf4f332e0c43</originalsourceid><addsrcrecordid>eNqFkM1KLDEQhYMoOP48g725d9djJenpdC8H8aoguBG3IZ1UnAzpZEwygm9_IyOzFQ4UVXxVhzqE3FBYUqD97XY5q7TD8o5xyQDGJdCq1QlZ0EHwtgPBT8kCWN-1AxXsnFzkvAUAMQJdkLd1o2MoKfr2M_r9jI11wRVs0eOMoTQzlk00jY2pKZuE2BpX59nFoHwz731xu43K2Ewqu9DM0aB34f2KnFnlM17_1Evy-u_-9e6xfX55eLpbP7eKj2NptVITs5MZDaJVgteu072mQjFmtAEx2apJdHboqNXjxHs12c5yzhB0xy_J38PZXYofe8xFzi5r9F4FjPssGXQDZT2toDiAOsWcE1q5S67m9iUpyO8Y5VYeY5TfMUqgVau6-efHQmWtvE0qaJeP64z2q4EPULn1gcP67qfDJLN2GDQal1AXaaL71es_4eWQcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20481261</pqid></control><display><type>article</type><title>A control-volume finite-element method for three-dimensional multiphase basin modeling</title><source>Elsevier ScienceDirect Journals</source><creator>Mello, Ulisses T. ; Rodrigues, José Roberto P. ; Rossa, André L.</creator><creatorcontrib>Mello, Ulisses T. ; Rodrigues, José Roberto P. ; Rossa, André L.</creatorcontrib><description>In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generation, multiphase fluid flow, and heat transfer in deforming porous media.
These integrated processes possess a wide range of time-scales, indicating the need for implicit methods. In addition, sedimentary basins are geometrically complex environments, requiring unstructured tetrahedral meshes to adequately represent the problem realistically without the need for an excessive number of mesh elements. Here, we also present a general formulation for problems involving back-oil, thermal, or compositional models using overall component mass concentrations, and an arbitrary Lagrangian–Eulerian (ALE) formulation to deal with salt motion conservatively. The Newton method is used to solve the sparse Jacobian systems resulting from the linearization of the coupled non-linear PDEs for multiphase flow and energy transfer. These systems are solved with the generalized minimal residual method (GMRES) method with an incomplete lower–upper (ILU) preconditioner for faster inner iteration convergence rates. We applied this model to a sedimentary basin and we describe the results for this basin.</description><identifier>ISSN: 0264-8172</identifier><identifier>EISSN: 1873-4073</identifier><identifier>DOI: 10.1016/j.marpetgeo.2009.01.015</identifier><identifier>CODEN: MPEGD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Compaction ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hydrocarbons ; Marine ; Marine geology ; Multiphase porous media flow ; Numerical basin modeling ; Sedimentary rocks ; Three-dimensional tetrahedral</subject><ispartof>Marine and petroleum geology, 2009-04, Vol.26 (4), p.504-518</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-caab2fbd9deefa73ab24c6c17a22dcd07bf7bfb74f841fc9b36abf4f332e0c43</citedby><cites>FETCH-LOGICAL-a399t-caab2fbd9deefa73ab24c6c17a22dcd07bf7bfb74f841fc9b36abf4f332e0c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0264817209000245$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21658380$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mello, Ulisses T.</creatorcontrib><creatorcontrib>Rodrigues, José Roberto P.</creatorcontrib><creatorcontrib>Rossa, André L.</creatorcontrib><title>A control-volume finite-element method for three-dimensional multiphase basin modeling</title><title>Marine and petroleum geology</title><description>In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generation, multiphase fluid flow, and heat transfer in deforming porous media.
These integrated processes possess a wide range of time-scales, indicating the need for implicit methods. In addition, sedimentary basins are geometrically complex environments, requiring unstructured tetrahedral meshes to adequately represent the problem realistically without the need for an excessive number of mesh elements. Here, we also present a general formulation for problems involving back-oil, thermal, or compositional models using overall component mass concentrations, and an arbitrary Lagrangian–Eulerian (ALE) formulation to deal with salt motion conservatively. The Newton method is used to solve the sparse Jacobian systems resulting from the linearization of the coupled non-linear PDEs for multiphase flow and energy transfer. These systems are solved with the generalized minimal residual method (GMRES) method with an incomplete lower–upper (ILU) preconditioner for faster inner iteration convergence rates. We applied this model to a sedimentary basin and we describe the results for this basin.</description><subject>Compaction</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydrocarbons</subject><subject>Marine</subject><subject>Marine geology</subject><subject>Multiphase porous media flow</subject><subject>Numerical basin modeling</subject><subject>Sedimentary rocks</subject><subject>Three-dimensional tetrahedral</subject><issn>0264-8172</issn><issn>1873-4073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KLDEQhYMoOP48g725d9djJenpdC8H8aoguBG3IZ1UnAzpZEwygm9_IyOzFQ4UVXxVhzqE3FBYUqD97XY5q7TD8o5xyQDGJdCq1QlZ0EHwtgPBT8kCWN-1AxXsnFzkvAUAMQJdkLd1o2MoKfr2M_r9jI11wRVs0eOMoTQzlk00jY2pKZuE2BpX59nFoHwz731xu43K2Ewqu9DM0aB34f2KnFnlM17_1Evy-u_-9e6xfX55eLpbP7eKj2NptVITs5MZDaJVgteu072mQjFmtAEx2apJdHboqNXjxHs12c5yzhB0xy_J38PZXYofe8xFzi5r9F4FjPssGXQDZT2toDiAOsWcE1q5S67m9iUpyO8Y5VYeY5TfMUqgVau6-efHQmWtvE0qaJeP64z2q4EPULn1gcP67qfDJLN2GDQal1AXaaL71es_4eWQcA</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Mello, Ulisses T.</creator><creator>Rodrigues, José Roberto P.</creator><creator>Rossa, André L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20090401</creationdate><title>A control-volume finite-element method for three-dimensional multiphase basin modeling</title><author>Mello, Ulisses T. ; Rodrigues, José Roberto P. ; Rossa, André L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-caab2fbd9deefa73ab24c6c17a22dcd07bf7bfb74f841fc9b36abf4f332e0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Compaction</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydrocarbons</topic><topic>Marine</topic><topic>Marine geology</topic><topic>Multiphase porous media flow</topic><topic>Numerical basin modeling</topic><topic>Sedimentary rocks</topic><topic>Three-dimensional tetrahedral</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mello, Ulisses T.</creatorcontrib><creatorcontrib>Rodrigues, José Roberto P.</creatorcontrib><creatorcontrib>Rossa, André L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Marine and petroleum geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mello, Ulisses T.</au><au>Rodrigues, José Roberto P.</au><au>Rossa, André L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A control-volume finite-element method for three-dimensional multiphase basin modeling</atitle><jtitle>Marine and petroleum geology</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>26</volume><issue>4</issue><spage>504</spage><epage>518</epage><pages>504-518</pages><issn>0264-8172</issn><eissn>1873-4073</eissn><coden>MPEGD8</coden><abstract>In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generation, multiphase fluid flow, and heat transfer in deforming porous media.
These integrated processes possess a wide range of time-scales, indicating the need for implicit methods. In addition, sedimentary basins are geometrically complex environments, requiring unstructured tetrahedral meshes to adequately represent the problem realistically without the need for an excessive number of mesh elements. Here, we also present a general formulation for problems involving back-oil, thermal, or compositional models using overall component mass concentrations, and an arbitrary Lagrangian–Eulerian (ALE) formulation to deal with salt motion conservatively. The Newton method is used to solve the sparse Jacobian systems resulting from the linearization of the coupled non-linear PDEs for multiphase flow and energy transfer. These systems are solved with the generalized minimal residual method (GMRES) method with an incomplete lower–upper (ILU) preconditioner for faster inner iteration convergence rates. We applied this model to a sedimentary basin and we describe the results for this basin.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.marpetgeo.2009.01.015</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-8172 |
ispartof | Marine and petroleum geology, 2009-04, Vol.26 (4), p.504-518 |
issn | 0264-8172 1873-4073 |
language | eng |
recordid | cdi_proquest_miscellaneous_20481261 |
source | Elsevier ScienceDirect Journals |
subjects | Compaction Earth sciences Earth, ocean, space Exact sciences and technology Hydrocarbons Marine Marine geology Multiphase porous media flow Numerical basin modeling Sedimentary rocks Three-dimensional tetrahedral |
title | A control-volume finite-element method for three-dimensional multiphase basin modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20control-volume%20finite-element%20method%20for%20three-dimensional%20multiphase%20basin%20modeling&rft.jtitle=Marine%20and%20petroleum%20geology&rft.au=Mello,%20Ulisses%20T.&rft.date=2009-04-01&rft.volume=26&rft.issue=4&rft.spage=504&rft.epage=518&rft.pages=504-518&rft.issn=0264-8172&rft.eissn=1873-4073&rft.coden=MPEGD8&rft_id=info:doi/10.1016/j.marpetgeo.2009.01.015&rft_dat=%3Cproquest_cross%3E20481261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20481261&rft_id=info:pmid/&rft_els_id=S0264817209000245&rfr_iscdi=true |