Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities
An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well‐defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and micr...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-07, Vol.14 (27), p.e1702054-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 27 |
container_start_page | e1702054 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 14 |
creator | Lian, Hong‐Yuan Dutta, Saikat Tominaka, Satoshi Lee, Yu‐An Huang, Shu‐Yun Sakamoto, Yasuhiro Hou, Chia‐Hung Liu, Wei‐Ren Henzie, Joel Yamauchi, Yusuke Wu, Kevin C.‐W. |
description | An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well‐defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium‐ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g−1), with great rate capability (248 mAh g−1 at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g−1 in 0.5 × 10−3m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance.
Unambiguous formation of a graphene nanofragment with the advantage of curved architecture with high‐surface area 3D mesostructure offers low‐tortuosity electrode architectures containing fast ion diffusion pathways and low transport resistance. A rare macroporous curved graphene framework formed via evaporation‐induced self‐assembly is an illusion that demonstrates extraordinary charging capacity as 3MCM–assembled anode for lithium‐ion batteries (LIBs) and capacitive deionization (CDI). |
doi_str_mv | 10.1002/smll.201702054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2047251278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064232706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4124-3aede00548910d5e9a46d30e91e1261c4e5cb18dc5b14e6528c33111896658d73</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EoqWwMqJILCwpvo7jJGMV9YEUxABsSJHr3Lau8ih2AvTf46qlSCxMPsN3j44_Qq6BDoFSdm-rshwyChFlNOQnpA8CAl_ELDk9ZqA9cmHtmtIAGI_OSY8lMQ8jJvrkLe3MBxbexMhlhXXr4tTIzQprrbyZRiONWmklS2-0Cy2qtjNovUVjvPFXa2RjCl1Ls_XSlTRLXS-9VG6k0q1Ge0nOFrK0eHV4B-R1Mn5JZ372NH1IR5mvuBvkBxILpG5-nAAtQkwkF0VAMQEEJkBxDNUc4kKFc-AoQharIACAOBEijIsoGJC7fe_GNO8d2javtFVYlrLGprM5ozxiIbAodujtH3TddKZ26xwlOAtYRIWjhntKmcZag4t8Y3TlfpkDzXfe8533_OjdHdwcart5hcUR_xHtgGQPfOoSt__U5c-PWfZb_g1-Do6O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064232706</pqid></control><display><type>article</type><title>Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities</title><source>Wiley-Blackwell Journals</source><creator>Lian, Hong‐Yuan ; Dutta, Saikat ; Tominaka, Satoshi ; Lee, Yu‐An ; Huang, Shu‐Yun ; Sakamoto, Yasuhiro ; Hou, Chia‐Hung ; Liu, Wei‐Ren ; Henzie, Joel ; Yamauchi, Yusuke ; Wu, Kevin C.‐W.</creator><creatorcontrib>Lian, Hong‐Yuan ; Dutta, Saikat ; Tominaka, Satoshi ; Lee, Yu‐An ; Huang, Shu‐Yun ; Sakamoto, Yasuhiro ; Hou, Chia‐Hung ; Liu, Wei‐Ren ; Henzie, Joel ; Yamauchi, Yusuke ; Wu, Kevin C.‐W.</creatorcontrib><description>An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well‐defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium‐ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g−1), with great rate capability (248 mAh g−1 at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g−1 in 0.5 × 10−3m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance.
Unambiguous formation of a graphene nanofragment with the advantage of curved architecture with high‐surface area 3D mesostructure offers low‐tortuosity electrode architectures containing fast ion diffusion pathways and low transport resistance. A rare macroporous curved graphene framework formed via evaporation‐induced self‐assembly is an illusion that demonstrates extraordinary charging capacity as 3MCM–assembled anode for lithium‐ion batteries (LIBs) and capacitive deionization (CDI).</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201702054</identifier><identifier>PMID: 29845726</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; capacitive deionization ; Carbon ; charging capacity ; curved graphene ; Deionization ; Diffusion rate ; Electrodes ; Energy storage ; Ion diffusion ; Lithium ; Nanotechnology ; porous carbon ; Sodium chloride ; Structural hierarchy ; X‐ray pair distribution</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-07, Vol.14 (27), p.e1702054-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4124-3aede00548910d5e9a46d30e91e1261c4e5cb18dc5b14e6528c33111896658d73</citedby><cites>FETCH-LOGICAL-c4124-3aede00548910d5e9a46d30e91e1261c4e5cb18dc5b14e6528c33111896658d73</cites><orcidid>0000-0003-0590-1396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201702054$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201702054$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29845726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lian, Hong‐Yuan</creatorcontrib><creatorcontrib>Dutta, Saikat</creatorcontrib><creatorcontrib>Tominaka, Satoshi</creatorcontrib><creatorcontrib>Lee, Yu‐An</creatorcontrib><creatorcontrib>Huang, Shu‐Yun</creatorcontrib><creatorcontrib>Sakamoto, Yasuhiro</creatorcontrib><creatorcontrib>Hou, Chia‐Hung</creatorcontrib><creatorcontrib>Liu, Wei‐Ren</creatorcontrib><creatorcontrib>Henzie, Joel</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>Wu, Kevin C.‐W.</creatorcontrib><title>Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well‐defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium‐ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g−1), with great rate capability (248 mAh g−1 at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g−1 in 0.5 × 10−3m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance.
Unambiguous formation of a graphene nanofragment with the advantage of curved architecture with high‐surface area 3D mesostructure offers low‐tortuosity electrode architectures containing fast ion diffusion pathways and low transport resistance. A rare macroporous curved graphene framework formed via evaporation‐induced self‐assembly is an illusion that demonstrates extraordinary charging capacity as 3MCM–assembled anode for lithium‐ion batteries (LIBs) and capacitive deionization (CDI).</description><subject>Batteries</subject><subject>capacitive deionization</subject><subject>Carbon</subject><subject>charging capacity</subject><subject>curved graphene</subject><subject>Deionization</subject><subject>Diffusion rate</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Nanotechnology</subject><subject>porous carbon</subject><subject>Sodium chloride</subject><subject>Structural hierarchy</subject><subject>X‐ray pair distribution</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EoqWwMqJILCwpvo7jJGMV9YEUxABsSJHr3Lau8ih2AvTf46qlSCxMPsN3j44_Qq6BDoFSdm-rshwyChFlNOQnpA8CAl_ELDk9ZqA9cmHtmtIAGI_OSY8lMQ8jJvrkLe3MBxbexMhlhXXr4tTIzQprrbyZRiONWmklS2-0Cy2qtjNovUVjvPFXa2RjCl1Ls_XSlTRLXS-9VG6k0q1Ge0nOFrK0eHV4B-R1Mn5JZ372NH1IR5mvuBvkBxILpG5-nAAtQkwkF0VAMQEEJkBxDNUc4kKFc-AoQharIACAOBEijIsoGJC7fe_GNO8d2javtFVYlrLGprM5ozxiIbAodujtH3TddKZ26xwlOAtYRIWjhntKmcZag4t8Y3TlfpkDzXfe8533_OjdHdwcart5hcUR_xHtgGQPfOoSt__U5c-PWfZb_g1-Do6O</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Lian, Hong‐Yuan</creator><creator>Dutta, Saikat</creator><creator>Tominaka, Satoshi</creator><creator>Lee, Yu‐An</creator><creator>Huang, Shu‐Yun</creator><creator>Sakamoto, Yasuhiro</creator><creator>Hou, Chia‐Hung</creator><creator>Liu, Wei‐Ren</creator><creator>Henzie, Joel</creator><creator>Yamauchi, Yusuke</creator><creator>Wu, Kevin C.‐W.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0590-1396</orcidid></search><sort><creationdate>201807</creationdate><title>Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities</title><author>Lian, Hong‐Yuan ; Dutta, Saikat ; Tominaka, Satoshi ; Lee, Yu‐An ; Huang, Shu‐Yun ; Sakamoto, Yasuhiro ; Hou, Chia‐Hung ; Liu, Wei‐Ren ; Henzie, Joel ; Yamauchi, Yusuke ; Wu, Kevin C.‐W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4124-3aede00548910d5e9a46d30e91e1261c4e5cb18dc5b14e6528c33111896658d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>capacitive deionization</topic><topic>Carbon</topic><topic>charging capacity</topic><topic>curved graphene</topic><topic>Deionization</topic><topic>Diffusion rate</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Nanotechnology</topic><topic>porous carbon</topic><topic>Sodium chloride</topic><topic>Structural hierarchy</topic><topic>X‐ray pair distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Hong‐Yuan</creatorcontrib><creatorcontrib>Dutta, Saikat</creatorcontrib><creatorcontrib>Tominaka, Satoshi</creatorcontrib><creatorcontrib>Lee, Yu‐An</creatorcontrib><creatorcontrib>Huang, Shu‐Yun</creatorcontrib><creatorcontrib>Sakamoto, Yasuhiro</creatorcontrib><creatorcontrib>Hou, Chia‐Hung</creatorcontrib><creatorcontrib>Liu, Wei‐Ren</creatorcontrib><creatorcontrib>Henzie, Joel</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>Wu, Kevin C.‐W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lian, Hong‐Yuan</au><au>Dutta, Saikat</au><au>Tominaka, Satoshi</au><au>Lee, Yu‐An</au><au>Huang, Shu‐Yun</au><au>Sakamoto, Yasuhiro</au><au>Hou, Chia‐Hung</au><au>Liu, Wei‐Ren</au><au>Henzie, Joel</au><au>Yamauchi, Yusuke</au><au>Wu, Kevin C.‐W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-07</date><risdate>2018</risdate><volume>14</volume><issue>27</issue><spage>e1702054</spage><epage>n/a</epage><pages>e1702054-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well‐defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium‐ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g−1), with great rate capability (248 mAh g−1 at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g−1 in 0.5 × 10−3m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance.
Unambiguous formation of a graphene nanofragment with the advantage of curved architecture with high‐surface area 3D mesostructure offers low‐tortuosity electrode architectures containing fast ion diffusion pathways and low transport resistance. A rare macroporous curved graphene framework formed via evaporation‐induced self‐assembly is an illusion that demonstrates extraordinary charging capacity as 3MCM–assembled anode for lithium‐ion batteries (LIBs) and capacitive deionization (CDI).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29845726</pmid><doi>10.1002/smll.201702054</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0590-1396</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2018-07, Vol.14 (27), p.e1702054-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2047251278 |
source | Wiley-Blackwell Journals |
subjects | Batteries capacitive deionization Carbon charging capacity curved graphene Deionization Diffusion rate Electrodes Energy storage Ion diffusion Lithium Nanotechnology porous carbon Sodium chloride Structural hierarchy X‐ray pair distribution |
title | Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curved%20Fragmented%20Graphenic%20Hierarchical%20Architectures%20for%20Extraordinary%20Charging%20Capacities&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lian,%20Hong%E2%80%90Yuan&rft.date=2018-07&rft.volume=14&rft.issue=27&rft.spage=e1702054&rft.epage=n/a&rft.pages=e1702054-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201702054&rft_dat=%3Cproquest_cross%3E2064232706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064232706&rft_id=info:pmid/29845726&rfr_iscdi=true |