Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities

An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well‐defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and micr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-07, Vol.14 (27), p.e1702054-n/a
Hauptverfasser: Lian, Hong‐Yuan, Dutta, Saikat, Tominaka, Satoshi, Lee, Yu‐An, Huang, Shu‐Yun, Sakamoto, Yasuhiro, Hou, Chia‐Hung, Liu, Wei‐Ren, Henzie, Joel, Yamauchi, Yusuke, Wu, Kevin C.‐W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 27
container_start_page e1702054
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 14
creator Lian, Hong‐Yuan
Dutta, Saikat
Tominaka, Satoshi
Lee, Yu‐An
Huang, Shu‐Yun
Sakamoto, Yasuhiro
Hou, Chia‐Hung
Liu, Wei‐Ren
Henzie, Joel
Yamauchi, Yusuke
Wu, Kevin C.‐W.
description An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well‐defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium‐ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g−1), with great rate capability (248 mAh g−1 at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g−1 in 0.5 × 10−3m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance. Unambiguous formation of a graphene nanofragment with the advantage of curved architecture with high‐surface area 3D mesostructure offers low‐tortuosity electrode architectures containing fast ion diffusion pathways and low transport resistance. A rare macroporous curved graphene framework formed via evaporation‐induced self‐assembly is an illusion that demonstrates extraordinary charging capacity as 3MCM–assembled anode for lithium‐ion batteries (LIBs) and capacitive deionization (CDI).
doi_str_mv 10.1002/smll.201702054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2047251278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064232706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4124-3aede00548910d5e9a46d30e91e1261c4e5cb18dc5b14e6528c33111896658d73</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EoqWwMqJILCwpvo7jJGMV9YEUxABsSJHr3Lau8ih2AvTf46qlSCxMPsN3j44_Qq6BDoFSdm-rshwyChFlNOQnpA8CAl_ELDk9ZqA9cmHtmtIAGI_OSY8lMQ8jJvrkLe3MBxbexMhlhXXr4tTIzQprrbyZRiONWmklS2-0Cy2qtjNovUVjvPFXa2RjCl1Ls_XSlTRLXS-9VG6k0q1Ge0nOFrK0eHV4B-R1Mn5JZ372NH1IR5mvuBvkBxILpG5-nAAtQkwkF0VAMQEEJkBxDNUc4kKFc-AoQharIACAOBEijIsoGJC7fe_GNO8d2javtFVYlrLGprM5ozxiIbAodujtH3TddKZ26xwlOAtYRIWjhntKmcZag4t8Y3TlfpkDzXfe8533_OjdHdwcart5hcUR_xHtgGQPfOoSt__U5c-PWfZb_g1-Do6O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064232706</pqid></control><display><type>article</type><title>Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities</title><source>Wiley-Blackwell Journals</source><creator>Lian, Hong‐Yuan ; Dutta, Saikat ; Tominaka, Satoshi ; Lee, Yu‐An ; Huang, Shu‐Yun ; Sakamoto, Yasuhiro ; Hou, Chia‐Hung ; Liu, Wei‐Ren ; Henzie, Joel ; Yamauchi, Yusuke ; Wu, Kevin C.‐W.</creator><creatorcontrib>Lian, Hong‐Yuan ; Dutta, Saikat ; Tominaka, Satoshi ; Lee, Yu‐An ; Huang, Shu‐Yun ; Sakamoto, Yasuhiro ; Hou, Chia‐Hung ; Liu, Wei‐Ren ; Henzie, Joel ; Yamauchi, Yusuke ; Wu, Kevin C.‐W.</creatorcontrib><description>An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well‐defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium‐ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g−1), with great rate capability (248 mAh g−1 at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g−1 in 0.5 × 10−3m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance. Unambiguous formation of a graphene nanofragment with the advantage of curved architecture with high‐surface area 3D mesostructure offers low‐tortuosity electrode architectures containing fast ion diffusion pathways and low transport resistance. A rare macroporous curved graphene framework formed via evaporation‐induced self‐assembly is an illusion that demonstrates extraordinary charging capacity as 3MCM–assembled anode for lithium‐ion batteries (LIBs) and capacitive deionization (CDI).</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201702054</identifier><identifier>PMID: 29845726</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; capacitive deionization ; Carbon ; charging capacity ; curved graphene ; Deionization ; Diffusion rate ; Electrodes ; Energy storage ; Ion diffusion ; Lithium ; Nanotechnology ; porous carbon ; Sodium chloride ; Structural hierarchy ; X‐ray pair distribution</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-07, Vol.14 (27), p.e1702054-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4124-3aede00548910d5e9a46d30e91e1261c4e5cb18dc5b14e6528c33111896658d73</citedby><cites>FETCH-LOGICAL-c4124-3aede00548910d5e9a46d30e91e1261c4e5cb18dc5b14e6528c33111896658d73</cites><orcidid>0000-0003-0590-1396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201702054$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201702054$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29845726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lian, Hong‐Yuan</creatorcontrib><creatorcontrib>Dutta, Saikat</creatorcontrib><creatorcontrib>Tominaka, Satoshi</creatorcontrib><creatorcontrib>Lee, Yu‐An</creatorcontrib><creatorcontrib>Huang, Shu‐Yun</creatorcontrib><creatorcontrib>Sakamoto, Yasuhiro</creatorcontrib><creatorcontrib>Hou, Chia‐Hung</creatorcontrib><creatorcontrib>Liu, Wei‐Ren</creatorcontrib><creatorcontrib>Henzie, Joel</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>Wu, Kevin C.‐W.</creatorcontrib><title>Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well‐defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium‐ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g−1), with great rate capability (248 mAh g−1 at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g−1 in 0.5 × 10−3m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance. Unambiguous formation of a graphene nanofragment with the advantage of curved architecture with high‐surface area 3D mesostructure offers low‐tortuosity electrode architectures containing fast ion diffusion pathways and low transport resistance. A rare macroporous curved graphene framework formed via evaporation‐induced self‐assembly is an illusion that demonstrates extraordinary charging capacity as 3MCM–assembled anode for lithium‐ion batteries (LIBs) and capacitive deionization (CDI).</description><subject>Batteries</subject><subject>capacitive deionization</subject><subject>Carbon</subject><subject>charging capacity</subject><subject>curved graphene</subject><subject>Deionization</subject><subject>Diffusion rate</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Nanotechnology</subject><subject>porous carbon</subject><subject>Sodium chloride</subject><subject>Structural hierarchy</subject><subject>X‐ray pair distribution</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EoqWwMqJILCwpvo7jJGMV9YEUxABsSJHr3Lau8ih2AvTf46qlSCxMPsN3j44_Qq6BDoFSdm-rshwyChFlNOQnpA8CAl_ELDk9ZqA9cmHtmtIAGI_OSY8lMQ8jJvrkLe3MBxbexMhlhXXr4tTIzQprrbyZRiONWmklS2-0Cy2qtjNovUVjvPFXa2RjCl1Ls_XSlTRLXS-9VG6k0q1Ge0nOFrK0eHV4B-R1Mn5JZ372NH1IR5mvuBvkBxILpG5-nAAtQkwkF0VAMQEEJkBxDNUc4kKFc-AoQharIACAOBEijIsoGJC7fe_GNO8d2javtFVYlrLGprM5ozxiIbAodujtH3TddKZ26xwlOAtYRIWjhntKmcZag4t8Y3TlfpkDzXfe8533_OjdHdwcart5hcUR_xHtgGQPfOoSt__U5c-PWfZb_g1-Do6O</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Lian, Hong‐Yuan</creator><creator>Dutta, Saikat</creator><creator>Tominaka, Satoshi</creator><creator>Lee, Yu‐An</creator><creator>Huang, Shu‐Yun</creator><creator>Sakamoto, Yasuhiro</creator><creator>Hou, Chia‐Hung</creator><creator>Liu, Wei‐Ren</creator><creator>Henzie, Joel</creator><creator>Yamauchi, Yusuke</creator><creator>Wu, Kevin C.‐W.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0590-1396</orcidid></search><sort><creationdate>201807</creationdate><title>Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities</title><author>Lian, Hong‐Yuan ; Dutta, Saikat ; Tominaka, Satoshi ; Lee, Yu‐An ; Huang, Shu‐Yun ; Sakamoto, Yasuhiro ; Hou, Chia‐Hung ; Liu, Wei‐Ren ; Henzie, Joel ; Yamauchi, Yusuke ; Wu, Kevin C.‐W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4124-3aede00548910d5e9a46d30e91e1261c4e5cb18dc5b14e6528c33111896658d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>capacitive deionization</topic><topic>Carbon</topic><topic>charging capacity</topic><topic>curved graphene</topic><topic>Deionization</topic><topic>Diffusion rate</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Nanotechnology</topic><topic>porous carbon</topic><topic>Sodium chloride</topic><topic>Structural hierarchy</topic><topic>X‐ray pair distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Hong‐Yuan</creatorcontrib><creatorcontrib>Dutta, Saikat</creatorcontrib><creatorcontrib>Tominaka, Satoshi</creatorcontrib><creatorcontrib>Lee, Yu‐An</creatorcontrib><creatorcontrib>Huang, Shu‐Yun</creatorcontrib><creatorcontrib>Sakamoto, Yasuhiro</creatorcontrib><creatorcontrib>Hou, Chia‐Hung</creatorcontrib><creatorcontrib>Liu, Wei‐Ren</creatorcontrib><creatorcontrib>Henzie, Joel</creatorcontrib><creatorcontrib>Yamauchi, Yusuke</creatorcontrib><creatorcontrib>Wu, Kevin C.‐W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lian, Hong‐Yuan</au><au>Dutta, Saikat</au><au>Tominaka, Satoshi</au><au>Lee, Yu‐An</au><au>Huang, Shu‐Yun</au><au>Sakamoto, Yasuhiro</au><au>Hou, Chia‐Hung</au><au>Liu, Wei‐Ren</au><au>Henzie, Joel</au><au>Yamauchi, Yusuke</au><au>Wu, Kevin C.‐W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-07</date><risdate>2018</risdate><volume>14</volume><issue>27</issue><spage>e1702054</spage><epage>n/a</epage><pages>e1702054-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well‐defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium‐ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g−1), with great rate capability (248 mAh g−1 at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g−1 in 0.5 × 10−3m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance. Unambiguous formation of a graphene nanofragment with the advantage of curved architecture with high‐surface area 3D mesostructure offers low‐tortuosity electrode architectures containing fast ion diffusion pathways and low transport resistance. A rare macroporous curved graphene framework formed via evaporation‐induced self‐assembly is an illusion that demonstrates extraordinary charging capacity as 3MCM–assembled anode for lithium‐ion batteries (LIBs) and capacitive deionization (CDI).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29845726</pmid><doi>10.1002/smll.201702054</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0590-1396</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2018-07, Vol.14 (27), p.e1702054-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2047251278
source Wiley-Blackwell Journals
subjects Batteries
capacitive deionization
Carbon
charging capacity
curved graphene
Deionization
Diffusion rate
Electrodes
Energy storage
Ion diffusion
Lithium
Nanotechnology
porous carbon
Sodium chloride
Structural hierarchy
X‐ray pair distribution
title Curved Fragmented Graphenic Hierarchical Architectures for Extraordinary Charging Capacities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curved%20Fragmented%20Graphenic%20Hierarchical%20Architectures%20for%20Extraordinary%20Charging%20Capacities&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lian,%20Hong%E2%80%90Yuan&rft.date=2018-07&rft.volume=14&rft.issue=27&rft.spage=e1702054&rft.epage=n/a&rft.pages=e1702054-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201702054&rft_dat=%3Cproquest_cross%3E2064232706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064232706&rft_id=info:pmid/29845726&rfr_iscdi=true