Melanoma protective antitumor immunity activated by catalytic DNA
Melanoma incidence is increasing worldwide, and although drugs such as BRAF/MEK small-molecule inhibitors and immune checkpoint antibodies improve patient outcomes, most patients ultimately fail these therapies and alternative treatment strategies are urgently needed. DNAzymes have recently undergon...
Gespeichert in:
Veröffentlicht in: | Oncogene 2018-09, Vol.37 (37), p.5115-5126 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5126 |
---|---|
container_issue | 37 |
container_start_page | 5115 |
container_title | Oncogene |
container_volume | 37 |
creator | Cai, Hong Cho, Eun-Ae Li, Yue Sockler, Jim Parish, Christopher R. Chong, Beng H. Edwards, Jarem Dodds, Tristan J. Ferguson, Peter M. Wilmott, James S. Scolyer, Richard A. Halliday, Gary M. Khachigian, Levon M. |
description | Melanoma incidence is increasing worldwide, and although drugs such as BRAF/MEK small-molecule inhibitors and immune checkpoint antibodies improve patient outcomes, most patients ultimately fail these therapies and alternative treatment strategies are urgently needed. DNAzymes have recently undergone clinical trials with signs of efficacy and no serious adverse events attributable to the DNAzyme. Here we investigated c-Jun expression in human primary and metastatic melanoma. We also explored the role of T cell immunity in DNAzyme inhibition of primary melanoma growth and the prevention of growth in non-treated tumors after the cessation of treatment in a mouse model. c-Jun was expressed in 80% of melanoma cells in human primary melanomas (
n
= 17) and in 83% of metastatic melanoma cells (
n
= 38). In contrast, c-Jun was expressed in only 11% of melanocytes in benign nevi (
n
= 24). Dz13, a DNAzyme targeting c-Jun/AP-1, suppressed both Dz13-injected and untreated B16F10 melanoma growth in the same mice, an abscopal effect relieved in each case by administration of anti-CD4/anti-CD8 antibodies. Dz13 increased levels of cleaved caspase-3 within the tumors. New, untreated melanomas grew poorly in mice previously treated with Dz13. Administration of anti-CD4/anti-CD8 antibodies ablated this inhibitory effect and the tumors grew rapidly. Dz13 inhibited c-Jun expression, reduced intratumoral vascularity (vascular lumina area defined by CD31 staining), and increased CD4
+
cells within the tumors. This study provides the first demonstration of an abscopal effect of a DNAzyme on tumor growth and shows that Dz13 treatment prevents growth of subsequent new tumors in the same animal. Dz13 may be useful clinically as a therapeutic antitumor agent by preventing tumor relapse through adaptive immunity. |
doi_str_mv | 10.1038/s41388-018-0306-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2047247879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572945573</galeid><sourcerecordid>A572945573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-3c0f73904c920ee119f3e9eb2204aa63e56f3e0d77bf5dc7a21cacf1fee56b263</originalsourceid><addsrcrecordid>eNp1kctqHDEQRYVJsMdjf0A2oSEbb9rRs9VaDo7jBPzYJGuhVpeMTD8cSR2Yv08N49g4xAhJUHXqcqVLyAdGzxkV7ecsmWjbmjLcgjY1PSArJnVTK2XkO7KiRtHacMGPyHHOD5RSbSg_JEfctFIqLVZkcwODm-bRVY9pLuBL_A2Vm0osyzinKo7jMsWyrdyu4wr0VbetvCtu2Jboqy-3mxPyPrghw-nTvSY_v17-uPhWX99dfb_YXNdeClNq4WnQwlDpDacAjJkgwEDHOZXONQJUgwXaa90F1XvtOPPOBxYAOx1vxJqc7XXR6K8FcrFjzB4GtA_zki3qaC51qw2in_5BH-YlTejOcvy4RrVGNy_UvRvAxinMJTm_E7UbpbmRCn8IqfP_ULh6GKOfJwgR668G2H7ApznnBME-pji6tLWM2l1sdh-bxdjsLjY81uTjk-GlG6F_nvibEwJ8D2RsTfeQXl70tuofPqyghQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103658976</pqid></control><display><type>article</type><title>Melanoma protective antitumor immunity activated by catalytic DNA</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Cai, Hong ; Cho, Eun-Ae ; Li, Yue ; Sockler, Jim ; Parish, Christopher R. ; Chong, Beng H. ; Edwards, Jarem ; Dodds, Tristan J. ; Ferguson, Peter M. ; Wilmott, James S. ; Scolyer, Richard A. ; Halliday, Gary M. ; Khachigian, Levon M.</creator><creatorcontrib>Cai, Hong ; Cho, Eun-Ae ; Li, Yue ; Sockler, Jim ; Parish, Christopher R. ; Chong, Beng H. ; Edwards, Jarem ; Dodds, Tristan J. ; Ferguson, Peter M. ; Wilmott, James S. ; Scolyer, Richard A. ; Halliday, Gary M. ; Khachigian, Levon M.</creatorcontrib><description>Melanoma incidence is increasing worldwide, and although drugs such as BRAF/MEK small-molecule inhibitors and immune checkpoint antibodies improve patient outcomes, most patients ultimately fail these therapies and alternative treatment strategies are urgently needed. DNAzymes have recently undergone clinical trials with signs of efficacy and no serious adverse events attributable to the DNAzyme. Here we investigated c-Jun expression in human primary and metastatic melanoma. We also explored the role of T cell immunity in DNAzyme inhibition of primary melanoma growth and the prevention of growth in non-treated tumors after the cessation of treatment in a mouse model. c-Jun was expressed in 80% of melanoma cells in human primary melanomas (
n
= 17) and in 83% of metastatic melanoma cells (
n
= 38). In contrast, c-Jun was expressed in only 11% of melanocytes in benign nevi (
n
= 24). Dz13, a DNAzyme targeting c-Jun/AP-1, suppressed both Dz13-injected and untreated B16F10 melanoma growth in the same mice, an abscopal effect relieved in each case by administration of anti-CD4/anti-CD8 antibodies. Dz13 increased levels of cleaved caspase-3 within the tumors. New, untreated melanomas grew poorly in mice previously treated with Dz13. Administration of anti-CD4/anti-CD8 antibodies ablated this inhibitory effect and the tumors grew rapidly. Dz13 inhibited c-Jun expression, reduced intratumoral vascularity (vascular lumina area defined by CD31 staining), and increased CD4
+
cells within the tumors. This study provides the first demonstration of an abscopal effect of a DNAzyme on tumor growth and shows that Dz13 treatment prevents growth of subsequent new tumors in the same animal. Dz13 may be useful clinically as a therapeutic antitumor agent by preventing tumor relapse through adaptive immunity.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-018-0306-0</identifier><identifier>PMID: 29844573</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 631/1647 ; 631/67/1813/1634 ; 64/60 ; Adaptive immunity ; Antibodies ; Antineoplastic agents ; Apoptosis ; Biological products ; c-Jun protein ; Cancer metastasis ; Cancer prevention ; Care and treatment ; Caspase ; Caspase-3 ; CD4 antigen ; CD8 antigen ; Cell Biology ; Clinical trials ; Deoxyribonucleic acid ; DNA ; Gene expression ; Genetic aspects ; Human Genetics ; Immune checkpoint ; Immunity (Physiology) ; Immunoglobulins ; Immunosuppressive agents ; Internal Medicine ; Lymphocytes T ; Medicine ; Medicine & Public Health ; Melanocytes ; Melanoma ; Metastases ; Metastasis ; Oncology ; Patients ; Recurrence (Disease) ; T cells ; Transcription factors ; Tumors</subject><ispartof>Oncogene, 2018-09, Vol.37 (37), p.5115-5126</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-3c0f73904c920ee119f3e9eb2204aa63e56f3e0d77bf5dc7a21cacf1fee56b263</citedby><cites>FETCH-LOGICAL-c439t-3c0f73904c920ee119f3e9eb2204aa63e56f3e0d77bf5dc7a21cacf1fee56b263</cites><orcidid>0000-0003-3446-0323 ; 0000-0002-8991-0013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-018-0306-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-018-0306-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29844573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Cho, Eun-Ae</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Sockler, Jim</creatorcontrib><creatorcontrib>Parish, Christopher R.</creatorcontrib><creatorcontrib>Chong, Beng H.</creatorcontrib><creatorcontrib>Edwards, Jarem</creatorcontrib><creatorcontrib>Dodds, Tristan J.</creatorcontrib><creatorcontrib>Ferguson, Peter M.</creatorcontrib><creatorcontrib>Wilmott, James S.</creatorcontrib><creatorcontrib>Scolyer, Richard A.</creatorcontrib><creatorcontrib>Halliday, Gary M.</creatorcontrib><creatorcontrib>Khachigian, Levon M.</creatorcontrib><title>Melanoma protective antitumor immunity activated by catalytic DNA</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Melanoma incidence is increasing worldwide, and although drugs such as BRAF/MEK small-molecule inhibitors and immune checkpoint antibodies improve patient outcomes, most patients ultimately fail these therapies and alternative treatment strategies are urgently needed. DNAzymes have recently undergone clinical trials with signs of efficacy and no serious adverse events attributable to the DNAzyme. Here we investigated c-Jun expression in human primary and metastatic melanoma. We also explored the role of T cell immunity in DNAzyme inhibition of primary melanoma growth and the prevention of growth in non-treated tumors after the cessation of treatment in a mouse model. c-Jun was expressed in 80% of melanoma cells in human primary melanomas (
n
= 17) and in 83% of metastatic melanoma cells (
n
= 38). In contrast, c-Jun was expressed in only 11% of melanocytes in benign nevi (
n
= 24). Dz13, a DNAzyme targeting c-Jun/AP-1, suppressed both Dz13-injected and untreated B16F10 melanoma growth in the same mice, an abscopal effect relieved in each case by administration of anti-CD4/anti-CD8 antibodies. Dz13 increased levels of cleaved caspase-3 within the tumors. New, untreated melanomas grew poorly in mice previously treated with Dz13. Administration of anti-CD4/anti-CD8 antibodies ablated this inhibitory effect and the tumors grew rapidly. Dz13 inhibited c-Jun expression, reduced intratumoral vascularity (vascular lumina area defined by CD31 staining), and increased CD4
+
cells within the tumors. This study provides the first demonstration of an abscopal effect of a DNAzyme on tumor growth and shows that Dz13 treatment prevents growth of subsequent new tumors in the same animal. Dz13 may be useful clinically as a therapeutic antitumor agent by preventing tumor relapse through adaptive immunity.</description><subject>13/51</subject><subject>631/1647</subject><subject>631/67/1813/1634</subject><subject>64/60</subject><subject>Adaptive immunity</subject><subject>Antibodies</subject><subject>Antineoplastic agents</subject><subject>Apoptosis</subject><subject>Biological products</subject><subject>c-Jun protein</subject><subject>Cancer metastasis</subject><subject>Cancer prevention</subject><subject>Care and treatment</subject><subject>Caspase</subject><subject>Caspase-3</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>Cell Biology</subject><subject>Clinical trials</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Human Genetics</subject><subject>Immune checkpoint</subject><subject>Immunity (Physiology)</subject><subject>Immunoglobulins</subject><subject>Immunosuppressive agents</subject><subject>Internal Medicine</subject><subject>Lymphocytes T</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Melanocytes</subject><subject>Melanoma</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Oncology</subject><subject>Patients</subject><subject>Recurrence (Disease)</subject><subject>T cells</subject><subject>Transcription factors</subject><subject>Tumors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kctqHDEQRYVJsMdjf0A2oSEbb9rRs9VaDo7jBPzYJGuhVpeMTD8cSR2Yv08N49g4xAhJUHXqcqVLyAdGzxkV7ecsmWjbmjLcgjY1PSArJnVTK2XkO7KiRtHacMGPyHHOD5RSbSg_JEfctFIqLVZkcwODm-bRVY9pLuBL_A2Vm0osyzinKo7jMsWyrdyu4wr0VbetvCtu2Jboqy-3mxPyPrghw-nTvSY_v17-uPhWX99dfb_YXNdeClNq4WnQwlDpDacAjJkgwEDHOZXONQJUgwXaa90F1XvtOPPOBxYAOx1vxJqc7XXR6K8FcrFjzB4GtA_zki3qaC51qw2in_5BH-YlTejOcvy4RrVGNy_UvRvAxinMJTm_E7UbpbmRCn8IqfP_ULh6GKOfJwgR668G2H7ApznnBME-pji6tLWM2l1sdh-bxdjsLjY81uTjk-GlG6F_nvibEwJ8D2RsTfeQXl70tuofPqyghQ</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Cai, Hong</creator><creator>Cho, Eun-Ae</creator><creator>Li, Yue</creator><creator>Sockler, Jim</creator><creator>Parish, Christopher R.</creator><creator>Chong, Beng H.</creator><creator>Edwards, Jarem</creator><creator>Dodds, Tristan J.</creator><creator>Ferguson, Peter M.</creator><creator>Wilmott, James S.</creator><creator>Scolyer, Richard A.</creator><creator>Halliday, Gary M.</creator><creator>Khachigian, Levon M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3446-0323</orcidid><orcidid>https://orcid.org/0000-0002-8991-0013</orcidid></search><sort><creationdate>201809</creationdate><title>Melanoma protective antitumor immunity activated by catalytic DNA</title><author>Cai, Hong ; Cho, Eun-Ae ; Li, Yue ; Sockler, Jim ; Parish, Christopher R. ; Chong, Beng H. ; Edwards, Jarem ; Dodds, Tristan J. ; Ferguson, Peter M. ; Wilmott, James S. ; Scolyer, Richard A. ; Halliday, Gary M. ; Khachigian, Levon M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-3c0f73904c920ee119f3e9eb2204aa63e56f3e0d77bf5dc7a21cacf1fee56b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/51</topic><topic>631/1647</topic><topic>631/67/1813/1634</topic><topic>64/60</topic><topic>Adaptive immunity</topic><topic>Antibodies</topic><topic>Antineoplastic agents</topic><topic>Apoptosis</topic><topic>Biological products</topic><topic>c-Jun protein</topic><topic>Cancer metastasis</topic><topic>Cancer prevention</topic><topic>Care and treatment</topic><topic>Caspase</topic><topic>Caspase-3</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>Cell Biology</topic><topic>Clinical trials</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Human Genetics</topic><topic>Immune checkpoint</topic><topic>Immunity (Physiology)</topic><topic>Immunoglobulins</topic><topic>Immunosuppressive agents</topic><topic>Internal Medicine</topic><topic>Lymphocytes T</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Melanocytes</topic><topic>Melanoma</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Oncology</topic><topic>Patients</topic><topic>Recurrence (Disease)</topic><topic>T cells</topic><topic>Transcription factors</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Hong</creatorcontrib><creatorcontrib>Cho, Eun-Ae</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Sockler, Jim</creatorcontrib><creatorcontrib>Parish, Christopher R.</creatorcontrib><creatorcontrib>Chong, Beng H.</creatorcontrib><creatorcontrib>Edwards, Jarem</creatorcontrib><creatorcontrib>Dodds, Tristan J.</creatorcontrib><creatorcontrib>Ferguson, Peter M.</creatorcontrib><creatorcontrib>Wilmott, James S.</creatorcontrib><creatorcontrib>Scolyer, Richard A.</creatorcontrib><creatorcontrib>Halliday, Gary M.</creatorcontrib><creatorcontrib>Khachigian, Levon M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Hong</au><au>Cho, Eun-Ae</au><au>Li, Yue</au><au>Sockler, Jim</au><au>Parish, Christopher R.</au><au>Chong, Beng H.</au><au>Edwards, Jarem</au><au>Dodds, Tristan J.</au><au>Ferguson, Peter M.</au><au>Wilmott, James S.</au><au>Scolyer, Richard A.</au><au>Halliday, Gary M.</au><au>Khachigian, Levon M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melanoma protective antitumor immunity activated by catalytic DNA</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2018-09</date><risdate>2018</risdate><volume>37</volume><issue>37</issue><spage>5115</spage><epage>5126</epage><pages>5115-5126</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Melanoma incidence is increasing worldwide, and although drugs such as BRAF/MEK small-molecule inhibitors and immune checkpoint antibodies improve patient outcomes, most patients ultimately fail these therapies and alternative treatment strategies are urgently needed. DNAzymes have recently undergone clinical trials with signs of efficacy and no serious adverse events attributable to the DNAzyme. Here we investigated c-Jun expression in human primary and metastatic melanoma. We also explored the role of T cell immunity in DNAzyme inhibition of primary melanoma growth and the prevention of growth in non-treated tumors after the cessation of treatment in a mouse model. c-Jun was expressed in 80% of melanoma cells in human primary melanomas (
n
= 17) and in 83% of metastatic melanoma cells (
n
= 38). In contrast, c-Jun was expressed in only 11% of melanocytes in benign nevi (
n
= 24). Dz13, a DNAzyme targeting c-Jun/AP-1, suppressed both Dz13-injected and untreated B16F10 melanoma growth in the same mice, an abscopal effect relieved in each case by administration of anti-CD4/anti-CD8 antibodies. Dz13 increased levels of cleaved caspase-3 within the tumors. New, untreated melanomas grew poorly in mice previously treated with Dz13. Administration of anti-CD4/anti-CD8 antibodies ablated this inhibitory effect and the tumors grew rapidly. Dz13 inhibited c-Jun expression, reduced intratumoral vascularity (vascular lumina area defined by CD31 staining), and increased CD4
+
cells within the tumors. This study provides the first demonstration of an abscopal effect of a DNAzyme on tumor growth and shows that Dz13 treatment prevents growth of subsequent new tumors in the same animal. Dz13 may be useful clinically as a therapeutic antitumor agent by preventing tumor relapse through adaptive immunity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29844573</pmid><doi>10.1038/s41388-018-0306-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3446-0323</orcidid><orcidid>https://orcid.org/0000-0002-8991-0013</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2018-09, Vol.37 (37), p.5115-5126 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_proquest_miscellaneous_2047247879 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 13/51 631/1647 631/67/1813/1634 64/60 Adaptive immunity Antibodies Antineoplastic agents Apoptosis Biological products c-Jun protein Cancer metastasis Cancer prevention Care and treatment Caspase Caspase-3 CD4 antigen CD8 antigen Cell Biology Clinical trials Deoxyribonucleic acid DNA Gene expression Genetic aspects Human Genetics Immune checkpoint Immunity (Physiology) Immunoglobulins Immunosuppressive agents Internal Medicine Lymphocytes T Medicine Medicine & Public Health Melanocytes Melanoma Metastases Metastasis Oncology Patients Recurrence (Disease) T cells Transcription factors Tumors |
title | Melanoma protective antitumor immunity activated by catalytic DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melanoma%20protective%20antitumor%20immunity%20activated%20by%20catalytic%20DNA&rft.jtitle=Oncogene&rft.au=Cai,%20Hong&rft.date=2018-09&rft.volume=37&rft.issue=37&rft.spage=5115&rft.epage=5126&rft.pages=5115-5126&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-018-0306-0&rft_dat=%3Cgale_proqu%3EA572945573%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103658976&rft_id=info:pmid/29844573&rft_galeid=A572945573&rfr_iscdi=true |