Carbon Nanotube Networks as Nanoscaffolds for Fabricating Ultrathin Carbon Molecular Sieve Membranes
Carbon molecular sieve (CMS) membranes have shown great potential for gas separation owing to their low cost, good chemical stability, and high selectivity. However, most of the conventional CMS membranes exhibit low gas permeance due to their thick active layer, which limits their practical applica...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-06, Vol.10 (23), p.20182-20188 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20188 |
---|---|
container_issue | 23 |
container_start_page | 20182 |
container_title | ACS applied materials & interfaces |
container_volume | 10 |
creator | Hou, Jue Zhang, Huacheng Hu, Yaoxin Li, Xingya Chen, Xiaofang Kim, Seungju Wang, Yuqi Simon, George P Wang, Huanting |
description | Carbon molecular sieve (CMS) membranes have shown great potential for gas separation owing to their low cost, good chemical stability, and high selectivity. However, most of the conventional CMS membranes exhibit low gas permeance due to their thick active layer, which limits their practical applications. Herein, we report a new strategy for fabricating CMS membranes with a 100 nm-thick ultrathin active layer using poly(furfuryl alcohol) (PFA) as a carbon precursor and carbon nanotubes (CNTs) as nanoscaffolds. CNT networks are deposited on a porous substrate as nanoscaffolds, which guide PFA solution to effectively spread over the substrate and form a continuous layer, minimizing the penetration of PFA into the pores of the substrate. After pyrolysis process, the CMS membranes with 100–1000 nm-thick active layer can be obtained by adjusting the CNT loading. The 322 nm-thick CMS membrane exhibits the best trade-off between the gas permeance and selectivity, a H2 permeance of 4.55 × 10–8 mol m–2 s–1 Pa–1, an O2 permeance of 2.1 × 10–9 mol m–2 s–1 Pa–1, and an O2/N2 ideal selectivity of 10.5, which indicates the high quality of the membrane produced by this method. This work provides a simple, efficient strategy for fabricating ultrathin CMS membranes with high selectivity and improved gas flux. |
doi_str_mv | 10.1021/acsami.8b04481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2046607393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2046607393</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-d12eb588fe893104f9d602dac0759ec3e34dae89f78dfccee89eb44e559640693</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EoqWwMiKPCCnFThzXHlFFAaktA3SOHOcMKUlc7ATEv8eQ0I3pnu6-e7p7CJ1TMqUkptdKe1WXU5ETxgQ9QGMqGYtEnMaHe83YCJ14vyWEJzFJj9EoloIIzuUYFXPlctvgtWps2-WA19B-WvfmsfK_Ta-VMbYqPDbW4YXKXalVWzYveFO1TrWvZYMHj5WtQHeVcviphA_AK6hzpxrwp-jIqMrD2VAnaLO4fZ7fR8vHu4f5zTJSieRtVNAY8lQIA0ImlDAjC07iQmkySyXoBBJWqDAzM1EYrSFIyBmDNJWcES6TCbrsfXfOvnfg26wuvYaqCkfYzmcxYZyTWSKTgE57VDvrvQOT7VxZK_eVUZL9JJv1yWZDsmHhYvDu8hqKPf4XZQCueiAsZlvbuSa8-p_bN-wnhMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046607393</pqid></control><display><type>article</type><title>Carbon Nanotube Networks as Nanoscaffolds for Fabricating Ultrathin Carbon Molecular Sieve Membranes</title><source>American Chemical Society Journals</source><creator>Hou, Jue ; Zhang, Huacheng ; Hu, Yaoxin ; Li, Xingya ; Chen, Xiaofang ; Kim, Seungju ; Wang, Yuqi ; Simon, George P ; Wang, Huanting</creator><creatorcontrib>Hou, Jue ; Zhang, Huacheng ; Hu, Yaoxin ; Li, Xingya ; Chen, Xiaofang ; Kim, Seungju ; Wang, Yuqi ; Simon, George P ; Wang, Huanting</creatorcontrib><description>Carbon molecular sieve (CMS) membranes have shown great potential for gas separation owing to their low cost, good chemical stability, and high selectivity. However, most of the conventional CMS membranes exhibit low gas permeance due to their thick active layer, which limits their practical applications. Herein, we report a new strategy for fabricating CMS membranes with a 100 nm-thick ultrathin active layer using poly(furfuryl alcohol) (PFA) as a carbon precursor and carbon nanotubes (CNTs) as nanoscaffolds. CNT networks are deposited on a porous substrate as nanoscaffolds, which guide PFA solution to effectively spread over the substrate and form a continuous layer, minimizing the penetration of PFA into the pores of the substrate. After pyrolysis process, the CMS membranes with 100–1000 nm-thick active layer can be obtained by adjusting the CNT loading. The 322 nm-thick CMS membrane exhibits the best trade-off between the gas permeance and selectivity, a H2 permeance of 4.55 × 10–8 mol m–2 s–1 Pa–1, an O2 permeance of 2.1 × 10–9 mol m–2 s–1 Pa–1, and an O2/N2 ideal selectivity of 10.5, which indicates the high quality of the membrane produced by this method. This work provides a simple, efficient strategy for fabricating ultrathin CMS membranes with high selectivity and improved gas flux.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b04481</identifier><identifier>PMID: 29808669</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2018-06, Vol.10 (23), p.20182-20188</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-d12eb588fe893104f9d602dac0759ec3e34dae89f78dfccee89eb44e559640693</citedby><cites>FETCH-LOGICAL-a396t-d12eb588fe893104f9d602dac0759ec3e34dae89f78dfccee89eb44e559640693</cites><orcidid>0000-0003-0325-6979 ; 0000-0002-9887-5555 ; 0000-0001-5464-2947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b04481$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b04481$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29808669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Jue</creatorcontrib><creatorcontrib>Zhang, Huacheng</creatorcontrib><creatorcontrib>Hu, Yaoxin</creatorcontrib><creatorcontrib>Li, Xingya</creatorcontrib><creatorcontrib>Chen, Xiaofang</creatorcontrib><creatorcontrib>Kim, Seungju</creatorcontrib><creatorcontrib>Wang, Yuqi</creatorcontrib><creatorcontrib>Simon, George P</creatorcontrib><creatorcontrib>Wang, Huanting</creatorcontrib><title>Carbon Nanotube Networks as Nanoscaffolds for Fabricating Ultrathin Carbon Molecular Sieve Membranes</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Carbon molecular sieve (CMS) membranes have shown great potential for gas separation owing to their low cost, good chemical stability, and high selectivity. However, most of the conventional CMS membranes exhibit low gas permeance due to their thick active layer, which limits their practical applications. Herein, we report a new strategy for fabricating CMS membranes with a 100 nm-thick ultrathin active layer using poly(furfuryl alcohol) (PFA) as a carbon precursor and carbon nanotubes (CNTs) as nanoscaffolds. CNT networks are deposited on a porous substrate as nanoscaffolds, which guide PFA solution to effectively spread over the substrate and form a continuous layer, minimizing the penetration of PFA into the pores of the substrate. After pyrolysis process, the CMS membranes with 100–1000 nm-thick active layer can be obtained by adjusting the CNT loading. The 322 nm-thick CMS membrane exhibits the best trade-off between the gas permeance and selectivity, a H2 permeance of 4.55 × 10–8 mol m–2 s–1 Pa–1, an O2 permeance of 2.1 × 10–9 mol m–2 s–1 Pa–1, and an O2/N2 ideal selectivity of 10.5, which indicates the high quality of the membrane produced by this method. This work provides a simple, efficient strategy for fabricating ultrathin CMS membranes with high selectivity and improved gas flux.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EoqWwMiKPCCnFThzXHlFFAaktA3SOHOcMKUlc7ATEv8eQ0I3pnu6-e7p7CJ1TMqUkptdKe1WXU5ETxgQ9QGMqGYtEnMaHe83YCJ14vyWEJzFJj9EoloIIzuUYFXPlctvgtWps2-WA19B-WvfmsfK_Ta-VMbYqPDbW4YXKXalVWzYveFO1TrWvZYMHj5WtQHeVcviphA_AK6hzpxrwp-jIqMrD2VAnaLO4fZ7fR8vHu4f5zTJSieRtVNAY8lQIA0ImlDAjC07iQmkySyXoBBJWqDAzM1EYrSFIyBmDNJWcES6TCbrsfXfOvnfg26wuvYaqCkfYzmcxYZyTWSKTgE57VDvrvQOT7VxZK_eVUZL9JJv1yWZDsmHhYvDu8hqKPf4XZQCueiAsZlvbuSa8-p_bN-wnhMU</recordid><startdate>20180613</startdate><enddate>20180613</enddate><creator>Hou, Jue</creator><creator>Zhang, Huacheng</creator><creator>Hu, Yaoxin</creator><creator>Li, Xingya</creator><creator>Chen, Xiaofang</creator><creator>Kim, Seungju</creator><creator>Wang, Yuqi</creator><creator>Simon, George P</creator><creator>Wang, Huanting</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0325-6979</orcidid><orcidid>https://orcid.org/0000-0002-9887-5555</orcidid><orcidid>https://orcid.org/0000-0001-5464-2947</orcidid></search><sort><creationdate>20180613</creationdate><title>Carbon Nanotube Networks as Nanoscaffolds for Fabricating Ultrathin Carbon Molecular Sieve Membranes</title><author>Hou, Jue ; Zhang, Huacheng ; Hu, Yaoxin ; Li, Xingya ; Chen, Xiaofang ; Kim, Seungju ; Wang, Yuqi ; Simon, George P ; Wang, Huanting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-d12eb588fe893104f9d602dac0759ec3e34dae89f78dfccee89eb44e559640693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Jue</creatorcontrib><creatorcontrib>Zhang, Huacheng</creatorcontrib><creatorcontrib>Hu, Yaoxin</creatorcontrib><creatorcontrib>Li, Xingya</creatorcontrib><creatorcontrib>Chen, Xiaofang</creatorcontrib><creatorcontrib>Kim, Seungju</creatorcontrib><creatorcontrib>Wang, Yuqi</creatorcontrib><creatorcontrib>Simon, George P</creatorcontrib><creatorcontrib>Wang, Huanting</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Jue</au><au>Zhang, Huacheng</au><au>Hu, Yaoxin</au><au>Li, Xingya</au><au>Chen, Xiaofang</au><au>Kim, Seungju</au><au>Wang, Yuqi</au><au>Simon, George P</au><au>Wang, Huanting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanotube Networks as Nanoscaffolds for Fabricating Ultrathin Carbon Molecular Sieve Membranes</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-06-13</date><risdate>2018</risdate><volume>10</volume><issue>23</issue><spage>20182</spage><epage>20188</epage><pages>20182-20188</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Carbon molecular sieve (CMS) membranes have shown great potential for gas separation owing to their low cost, good chemical stability, and high selectivity. However, most of the conventional CMS membranes exhibit low gas permeance due to their thick active layer, which limits their practical applications. Herein, we report a new strategy for fabricating CMS membranes with a 100 nm-thick ultrathin active layer using poly(furfuryl alcohol) (PFA) as a carbon precursor and carbon nanotubes (CNTs) as nanoscaffolds. CNT networks are deposited on a porous substrate as nanoscaffolds, which guide PFA solution to effectively spread over the substrate and form a continuous layer, minimizing the penetration of PFA into the pores of the substrate. After pyrolysis process, the CMS membranes with 100–1000 nm-thick active layer can be obtained by adjusting the CNT loading. The 322 nm-thick CMS membrane exhibits the best trade-off between the gas permeance and selectivity, a H2 permeance of 4.55 × 10–8 mol m–2 s–1 Pa–1, an O2 permeance of 2.1 × 10–9 mol m–2 s–1 Pa–1, and an O2/N2 ideal selectivity of 10.5, which indicates the high quality of the membrane produced by this method. This work provides a simple, efficient strategy for fabricating ultrathin CMS membranes with high selectivity and improved gas flux.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29808669</pmid><doi>10.1021/acsami.8b04481</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0325-6979</orcidid><orcidid>https://orcid.org/0000-0002-9887-5555</orcidid><orcidid>https://orcid.org/0000-0001-5464-2947</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2018-06, Vol.10 (23), p.20182-20188 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2046607393 |
source | American Chemical Society Journals |
title | Carbon Nanotube Networks as Nanoscaffolds for Fabricating Ultrathin Carbon Molecular Sieve Membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanotube%20Networks%20as%20Nanoscaffolds%20for%20Fabricating%20Ultrathin%20Carbon%20Molecular%20Sieve%20Membranes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Hou,%20Jue&rft.date=2018-06-13&rft.volume=10&rft.issue=23&rft.spage=20182&rft.epage=20188&rft.pages=20182-20188&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b04481&rft_dat=%3Cproquest_cross%3E2046607393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2046607393&rft_id=info:pmid/29808669&rfr_iscdi=true |