A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals

The electroencephalogram (EEG) is the most prominent means to study epilepsy and capture changes in electrical brain activity that could declare an imminent seizure. In this work, Long Short-Term Memory (LSTM) networks are introduced in epileptic seizure prediction using EEG signals, expanding the u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2018-08, Vol.99, p.24-37
Hauptverfasser: Tsiouris, Κostas Μ., Pezoulas, Vasileios C., Zervakis, Michalis, Konitsiotis, Spiros, Koutsouris, Dimitrios D., Fotiadis, Dimitrios I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue
container_start_page 24
container_title Computers in biology and medicine
container_volume 99
creator Tsiouris, Κostas Μ.
Pezoulas, Vasileios C.
Zervakis, Michalis
Konitsiotis, Spiros
Koutsouris, Dimitrios D.
Fotiadis, Dimitrios I.
description The electroencephalogram (EEG) is the most prominent means to study epilepsy and capture changes in electrical brain activity that could declare an imminent seizure. In this work, Long Short-Term Memory (LSTM) networks are introduced in epileptic seizure prediction using EEG signals, expanding the use of deep learning algorithms with convolutional neural networks (CNN). A pre-analysis is initially performed to find the optimal architecture of the LSTM network by testing several modules and layers of memory units. Based on these results, a two-layer LSTM network is selected to evaluate seizure prediction performance using four different lengths of preictal windows, ranging from 15 min to 2 h. The LSTM model exploits a wide range of features extracted prior to classification, including time and frequency domain features, between EEG channels cross-correlation and graph theoretic features. The evaluation is performed using long-term EEG recordings from the open CHB-MIT Scalp EEG database, suggest that the proposed methodology is able to predict all 185 seizures, providing high rates of seizure prediction sensitivity and low false prediction rates (FPR) of 0.11–0.02 false alarms per hour, depending on the duration of the preictal window. The proposed LSTM-based methodology delivers a significant increase in seizure prediction performance compared to both traditional machine learning techniques and convolutional neural networks that have been previously evaluated in the literature. [Display omitted] •Introducing Long Short-Term Memory model in seizure prediction outperforming other machine learning algorithms.•No seizures were missed with zero false predictions in up to 17 of 24 cases across four preictal windows up to 2 h.•Better prediction performance compared to previous studies using the same dataset.
doi_str_mv 10.1016/j.compbiomed.2018.05.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2046604202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001048251830132X</els_id><sourcerecordid>2081461860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-d69db33e6f0d8b51a2b00280a500959f9bb5bbce338eace4134ab1e22be0568d3</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha2qqCy0f6Gy1EsvCWPHDs6Roi0gLeLAcrZiZwLeJnFqJ63g19fRLkLqhdMc3vdmRu8RQhnkDFh5tsut70fjfI9NzoGpHGQOrPpAVkydVxnIQnwkKwAGmVBcHpOTGHcAIKCAT-SYVwrOuYQVcRd044dHev_kw5RtMfT0FnsfnmmDONIO6zC4pA84_fXhF219oNMT0jFg4-zk_EB9S3F0HY6TszSie5kDRjrHxbZeX9HoHoe6i5_JUZsGfjnMU_Lwc729vM42d1c3lxebzArgU9aUVWOKAssWGmUkq7kB4ApqCVDJqq2MkcZYLAqFtUXBClEbhpwbBFmqpjgl3_d7x-B_zxgn3btosevqAf0cNQdRliA48IR--w_d-TkszyZKMVEyVUKi1J6ywccYsNVjcH0dnjUDvdShd_qtDr3UoUHqVEeyfj0cmM2ivRpf80_Ajz2AKZE_DoOO1uFgU7gB7aQb796_8g8mqqDq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081461860</pqid></control><display><type>article</type><title>A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals</title><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central</source><creator>Tsiouris, Κostas Μ. ; Pezoulas, Vasileios C. ; Zervakis, Michalis ; Konitsiotis, Spiros ; Koutsouris, Dimitrios D. ; Fotiadis, Dimitrios I.</creator><creatorcontrib>Tsiouris, Κostas Μ. ; Pezoulas, Vasileios C. ; Zervakis, Michalis ; Konitsiotis, Spiros ; Koutsouris, Dimitrios D. ; Fotiadis, Dimitrios I.</creatorcontrib><description>The electroencephalogram (EEG) is the most prominent means to study epilepsy and capture changes in electrical brain activity that could declare an imminent seizure. In this work, Long Short-Term Memory (LSTM) networks are introduced in epileptic seizure prediction using EEG signals, expanding the use of deep learning algorithms with convolutional neural networks (CNN). A pre-analysis is initially performed to find the optimal architecture of the LSTM network by testing several modules and layers of memory units. Based on these results, a two-layer LSTM network is selected to evaluate seizure prediction performance using four different lengths of preictal windows, ranging from 15 min to 2 h. The LSTM model exploits a wide range of features extracted prior to classification, including time and frequency domain features, between EEG channels cross-correlation and graph theoretic features. The evaluation is performed using long-term EEG recordings from the open CHB-MIT Scalp EEG database, suggest that the proposed methodology is able to predict all 185 seizures, providing high rates of seizure prediction sensitivity and low false prediction rates (FPR) of 0.11–0.02 false alarms per hour, depending on the duration of the preictal window. The proposed LSTM-based methodology delivers a significant increase in seizure prediction performance compared to both traditional machine learning techniques and convolutional neural networks that have been previously evaluated in the literature. [Display omitted] •Introducing Long Short-Term Memory model in seizure prediction outperforming other machine learning algorithms.•No seizures were missed with zero false predictions in up to 17 of 24 cases across four preictal windows up to 2 h.•Better prediction performance compared to previous studies using the same dataset.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2018.05.019</identifier><identifier>PMID: 29807250</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Brain ; Brain research ; Datasets ; Deep learning ; EEG ; Electroencephalography ; Epilepsy ; False alarms ; Feature extraction ; Fourier transforms ; Learning algorithms ; Long short-term memory ; LSTM model ; Machine learning ; Methods ; Multivariate analysis ; Neural networks ; Performance prediction ; Researchers ; Seizing ; Seizure prediction ; Seizures ; Signal processing</subject><ispartof>Computers in biology and medicine, 2018-08, Vol.99, p.24-37</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Aug 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-d69db33e6f0d8b51a2b00280a500959f9bb5bbce338eace4134ab1e22be0568d3</citedby><cites>FETCH-LOGICAL-c402t-d69db33e6f0d8b51a2b00280a500959f9bb5bbce338eace4134ab1e22be0568d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2081461860?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974,64362,64364,64366,72216</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29807250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsiouris, Κostas Μ.</creatorcontrib><creatorcontrib>Pezoulas, Vasileios C.</creatorcontrib><creatorcontrib>Zervakis, Michalis</creatorcontrib><creatorcontrib>Konitsiotis, Spiros</creatorcontrib><creatorcontrib>Koutsouris, Dimitrios D.</creatorcontrib><creatorcontrib>Fotiadis, Dimitrios I.</creatorcontrib><title>A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The electroencephalogram (EEG) is the most prominent means to study epilepsy and capture changes in electrical brain activity that could declare an imminent seizure. In this work, Long Short-Term Memory (LSTM) networks are introduced in epileptic seizure prediction using EEG signals, expanding the use of deep learning algorithms with convolutional neural networks (CNN). A pre-analysis is initially performed to find the optimal architecture of the LSTM network by testing several modules and layers of memory units. Based on these results, a two-layer LSTM network is selected to evaluate seizure prediction performance using four different lengths of preictal windows, ranging from 15 min to 2 h. The LSTM model exploits a wide range of features extracted prior to classification, including time and frequency domain features, between EEG channels cross-correlation and graph theoretic features. The evaluation is performed using long-term EEG recordings from the open CHB-MIT Scalp EEG database, suggest that the proposed methodology is able to predict all 185 seizures, providing high rates of seizure prediction sensitivity and low false prediction rates (FPR) of 0.11–0.02 false alarms per hour, depending on the duration of the preictal window. The proposed LSTM-based methodology delivers a significant increase in seizure prediction performance compared to both traditional machine learning techniques and convolutional neural networks that have been previously evaluated in the literature. [Display omitted] •Introducing Long Short-Term Memory model in seizure prediction outperforming other machine learning algorithms.•No seizures were missed with zero false predictions in up to 17 of 24 cases across four preictal windows up to 2 h.•Better prediction performance compared to previous studies using the same dataset.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain research</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Learning algorithms</subject><subject>Long short-term memory</subject><subject>LSTM model</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Multivariate analysis</subject><subject>Neural networks</subject><subject>Performance prediction</subject><subject>Researchers</subject><subject>Seizing</subject><subject>Seizure prediction</subject><subject>Seizures</subject><subject>Signal processing</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUFP3DAQha2qqCy0f6Gy1EsvCWPHDs6Roi0gLeLAcrZiZwLeJnFqJ63g19fRLkLqhdMc3vdmRu8RQhnkDFh5tsut70fjfI9NzoGpHGQOrPpAVkydVxnIQnwkKwAGmVBcHpOTGHcAIKCAT-SYVwrOuYQVcRd044dHev_kw5RtMfT0FnsfnmmDONIO6zC4pA84_fXhF219oNMT0jFg4-zk_EB9S3F0HY6TszSie5kDRjrHxbZeX9HoHoe6i5_JUZsGfjnMU_Lwc729vM42d1c3lxebzArgU9aUVWOKAssWGmUkq7kB4ApqCVDJqq2MkcZYLAqFtUXBClEbhpwbBFmqpjgl3_d7x-B_zxgn3btosevqAf0cNQdRliA48IR--w_d-TkszyZKMVEyVUKi1J6ywccYsNVjcH0dnjUDvdShd_qtDr3UoUHqVEeyfj0cmM2ivRpf80_Ajz2AKZE_DoOO1uFgU7gB7aQb796_8g8mqqDq</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Tsiouris, Κostas Μ.</creator><creator>Pezoulas, Vasileios C.</creator><creator>Zervakis, Michalis</creator><creator>Konitsiotis, Spiros</creator><creator>Koutsouris, Dimitrios D.</creator><creator>Fotiadis, Dimitrios I.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20180801</creationdate><title>A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals</title><author>Tsiouris, Κostas Μ. ; Pezoulas, Vasileios C. ; Zervakis, Michalis ; Konitsiotis, Spiros ; Koutsouris, Dimitrios D. ; Fotiadis, Dimitrios I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-d69db33e6f0d8b51a2b00280a500959f9bb5bbce338eace4134ab1e22be0568d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain research</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Learning algorithms</topic><topic>Long short-term memory</topic><topic>LSTM model</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Multivariate analysis</topic><topic>Neural networks</topic><topic>Performance prediction</topic><topic>Researchers</topic><topic>Seizing</topic><topic>Seizure prediction</topic><topic>Seizures</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsiouris, Κostas Μ.</creatorcontrib><creatorcontrib>Pezoulas, Vasileios C.</creatorcontrib><creatorcontrib>Zervakis, Michalis</creatorcontrib><creatorcontrib>Konitsiotis, Spiros</creatorcontrib><creatorcontrib>Koutsouris, Dimitrios D.</creatorcontrib><creatorcontrib>Fotiadis, Dimitrios I.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsiouris, Κostas Μ.</au><au>Pezoulas, Vasileios C.</au><au>Zervakis, Michalis</au><au>Konitsiotis, Spiros</au><au>Koutsouris, Dimitrios D.</au><au>Fotiadis, Dimitrios I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>99</volume><spage>24</spage><epage>37</epage><pages>24-37</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>The electroencephalogram (EEG) is the most prominent means to study epilepsy and capture changes in electrical brain activity that could declare an imminent seizure. In this work, Long Short-Term Memory (LSTM) networks are introduced in epileptic seizure prediction using EEG signals, expanding the use of deep learning algorithms with convolutional neural networks (CNN). A pre-analysis is initially performed to find the optimal architecture of the LSTM network by testing several modules and layers of memory units. Based on these results, a two-layer LSTM network is selected to evaluate seizure prediction performance using four different lengths of preictal windows, ranging from 15 min to 2 h. The LSTM model exploits a wide range of features extracted prior to classification, including time and frequency domain features, between EEG channels cross-correlation and graph theoretic features. The evaluation is performed using long-term EEG recordings from the open CHB-MIT Scalp EEG database, suggest that the proposed methodology is able to predict all 185 seizures, providing high rates of seizure prediction sensitivity and low false prediction rates (FPR) of 0.11–0.02 false alarms per hour, depending on the duration of the preictal window. The proposed LSTM-based methodology delivers a significant increase in seizure prediction performance compared to both traditional machine learning techniques and convolutional neural networks that have been previously evaluated in the literature. [Display omitted] •Introducing Long Short-Term Memory model in seizure prediction outperforming other machine learning algorithms.•No seizures were missed with zero false predictions in up to 17 of 24 cases across four preictal windows up to 2 h.•Better prediction performance compared to previous studies using the same dataset.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>29807250</pmid><doi>10.1016/j.compbiomed.2018.05.019</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2018-08, Vol.99, p.24-37
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2046604202
source Elsevier ScienceDirect Journals Complete; ProQuest Central
subjects Algorithms
Artificial intelligence
Artificial neural networks
Brain
Brain research
Datasets
Deep learning
EEG
Electroencephalography
Epilepsy
False alarms
Feature extraction
Fourier transforms
Learning algorithms
Long short-term memory
LSTM model
Machine learning
Methods
Multivariate analysis
Neural networks
Performance prediction
Researchers
Seizing
Seizure prediction
Seizures
Signal processing
title A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Long%20Short-Term%20Memory%20deep%20learning%20network%20for%20the%20prediction%20of%20epileptic%20seizures%20using%20EEG%20signals&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Tsiouris,%20%CE%9Aostas%20%CE%9C.&rft.date=2018-08-01&rft.volume=99&rft.spage=24&rft.epage=37&rft.pages=24-37&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2018.05.019&rft_dat=%3Cproquest_cross%3E2081461860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081461860&rft_id=info:pmid/29807250&rft_els_id=S001048251830132X&rfr_iscdi=true