Determining heterogeneous bottom friction distributions using a numerical wave model

This paper describes a method for estimating spatially variable bottom roughness lengths (kb) in friction‐dominated coastal regions where dense measurements of the significant wave height are available. The method utilizes a numerical wave model to calculate wavefields. The model‐predicted significa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. C. Oceans 2007-08, Vol.112 (C8), p.n/a
Hauptverfasser: Keen, T. R., Rogers, W. E., Dykes, J., Kaihatu, J. M., Holland, K. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue C8
container_start_page
container_title Journal of Geophysical Research. C. Oceans
container_volume 112
creator Keen, T. R.
Rogers, W. E.
Dykes, J.
Kaihatu, J. M.
Holland, K. T.
description This paper describes a method for estimating spatially variable bottom roughness lengths (kb) in friction‐dominated coastal regions where dense measurements of the significant wave height are available. The method utilizes a numerical wave model to calculate wavefields. The model‐predicted significant wave height is compared to a control simulation with a known kb field, which is a proxy for measured wave heights. The error is used in combination with an influence matrix to successively correct the bottom roughness field. This predictor‐corrector calculation is completed in a series of analysis cycles. The method is demonstrated in an idealized basin with different kb distributions. The test cases simulate swell propagating over a sloping beach. The original kb fields are recovered in a reasonable number of analysis cycles but the method is limited by the influence of bottom friction on the wave height. The inversion is shown to be robust in the presence of errors in the measured wavefield as well as random bathymetry errors. However, the inversion fails if bathymetry errors are large and/or systematic because the friction error is not substantially greater than the error from bathymetry, which is also a key parameter for calculating the wave height. Thus it is important to select parameters and variables that have well‐defined dependencies in the numerical wave model for this procedure to be effective.
doi_str_mv 10.1029/2005JC003309
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20463313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919963517</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4345-20c7410b1c17b012d0e7bed44ea8b647e4911f3078da14261cea92c50c1de50e3</originalsourceid><addsrcrecordid>eNp9kEtv1DAURi0EEqO2O35ANiAWpNzrV8ZLFOiUoQKBymNnOc5NMeRR7IS2_x4PU0FX9eba1jmfdD_GniAcI3DzkgOobQ0gBJgHbMVR6ZJz4A_ZClCuS-C8esyOUvoB-UilJeCKnb-mmeIQxjBeFN939-mCRpqWVDTTPE9D0cXg5zCNRRvSHEOz7B6pWNLOcMW4DJQJ1xdX7jcVw9RSf8geda5PdHQ7D9jnkzfn9Wl59mHztn51VjoppCo5-EoiNOixagB5C1Q11EpJbt1oWZE0iJ2Aat06lFyjJ2e4V-CxJQUkDtizfe5lnH4tlGY7hOSp793fDSwHqYVAkcHn94Jo0BgtFFYZfbFHfZxSitTZyxgGF28sgt0Vbe8WnfGnt8ku5RK66EYf0n_HgFFc6MyJPXcVerq5N9NuN5_q_AsqW-XeytXT9T_LxZ9WV6JS9uv7jYVv9fYdfNT2i_gDiEqaqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919963517</pqid></control><display><type>article</type><title>Determining heterogeneous bottom friction distributions using a numerical wave model</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Keen, T. R. ; Rogers, W. E. ; Dykes, J. ; Kaihatu, J. M. ; Holland, K. T.</creator><creatorcontrib>Keen, T. R. ; Rogers, W. E. ; Dykes, J. ; Kaihatu, J. M. ; Holland, K. T.</creatorcontrib><description>This paper describes a method for estimating spatially variable bottom roughness lengths (kb) in friction‐dominated coastal regions where dense measurements of the significant wave height are available. The method utilizes a numerical wave model to calculate wavefields. The model‐predicted significant wave height is compared to a control simulation with a known kb field, which is a proxy for measured wave heights. The error is used in combination with an influence matrix to successively correct the bottom roughness field. This predictor‐corrector calculation is completed in a series of analysis cycles. The method is demonstrated in an idealized basin with different kb distributions. The test cases simulate swell propagating over a sloping beach. The original kb fields are recovered in a reasonable number of analysis cycles but the method is limited by the influence of bottom friction on the wave height. The inversion is shown to be robust in the presence of errors in the measured wavefield as well as random bathymetry errors. However, the inversion fails if bathymetry errors are large and/or systematic because the friction error is not substantially greater than the error from bathymetry, which is also a key parameter for calculating the wave height. Thus it is important to select parameters and variables that have well‐defined dependencies in the numerical wave model for this procedure to be effective.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2005JC003309</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>bottom dissipation ; data assimilation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Marine ; numerical wave model</subject><ispartof>Journal of Geophysical Research. C. Oceans, 2007-08, Vol.112 (C8), p.n/a</ispartof><rights>Copyright 2007 by the American Geophysical Union.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4345-20c7410b1c17b012d0e7bed44ea8b647e4911f3078da14261cea92c50c1de50e3</citedby><cites>FETCH-LOGICAL-a4345-20c7410b1c17b012d0e7bed44ea8b647e4911f3078da14261cea92c50c1de50e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005JC003309$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005JC003309$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19095236$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keen, T. R.</creatorcontrib><creatorcontrib>Rogers, W. E.</creatorcontrib><creatorcontrib>Dykes, J.</creatorcontrib><creatorcontrib>Kaihatu, J. M.</creatorcontrib><creatorcontrib>Holland, K. T.</creatorcontrib><title>Determining heterogeneous bottom friction distributions using a numerical wave model</title><title>Journal of Geophysical Research. C. Oceans</title><addtitle>J. Geophys. Res</addtitle><description>This paper describes a method for estimating spatially variable bottom roughness lengths (kb) in friction‐dominated coastal regions where dense measurements of the significant wave height are available. The method utilizes a numerical wave model to calculate wavefields. The model‐predicted significant wave height is compared to a control simulation with a known kb field, which is a proxy for measured wave heights. The error is used in combination with an influence matrix to successively correct the bottom roughness field. This predictor‐corrector calculation is completed in a series of analysis cycles. The method is demonstrated in an idealized basin with different kb distributions. The test cases simulate swell propagating over a sloping beach. The original kb fields are recovered in a reasonable number of analysis cycles but the method is limited by the influence of bottom friction on the wave height. The inversion is shown to be robust in the presence of errors in the measured wavefield as well as random bathymetry errors. However, the inversion fails if bathymetry errors are large and/or systematic because the friction error is not substantially greater than the error from bathymetry, which is also a key parameter for calculating the wave height. Thus it is important to select parameters and variables that have well‐defined dependencies in the numerical wave model for this procedure to be effective.</description><subject>bottom dissipation</subject><subject>data assimilation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Marine</subject><subject>numerical wave model</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kEtv1DAURi0EEqO2O35ANiAWpNzrV8ZLFOiUoQKBymNnOc5NMeRR7IS2_x4PU0FX9eba1jmfdD_GniAcI3DzkgOobQ0gBJgHbMVR6ZJz4A_ZClCuS-C8esyOUvoB-UilJeCKnb-mmeIQxjBeFN939-mCRpqWVDTTPE9D0cXg5zCNRRvSHEOz7B6pWNLOcMW4DJQJ1xdX7jcVw9RSf8geda5PdHQ7D9jnkzfn9Wl59mHztn51VjoppCo5-EoiNOixagB5C1Q11EpJbt1oWZE0iJ2Aat06lFyjJ2e4V-CxJQUkDtizfe5lnH4tlGY7hOSp793fDSwHqYVAkcHn94Jo0BgtFFYZfbFHfZxSitTZyxgGF28sgt0Vbe8WnfGnt8ku5RK66EYf0n_HgFFc6MyJPXcVerq5N9NuN5_q_AsqW-XeytXT9T_LxZ9WV6JS9uv7jYVv9fYdfNT2i_gDiEqaqA</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Keen, T. R.</creator><creator>Rogers, W. E.</creator><creator>Dykes, J.</creator><creator>Kaihatu, J. M.</creator><creator>Holland, K. T.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>200708</creationdate><title>Determining heterogeneous bottom friction distributions using a numerical wave model</title><author>Keen, T. R. ; Rogers, W. E. ; Dykes, J. ; Kaihatu, J. M. ; Holland, K. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4345-20c7410b1c17b012d0e7bed44ea8b647e4911f3078da14261cea92c50c1de50e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>bottom dissipation</topic><topic>data assimilation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Marine</topic><topic>numerical wave model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keen, T. R.</creatorcontrib><creatorcontrib>Rogers, W. E.</creatorcontrib><creatorcontrib>Dykes, J.</creatorcontrib><creatorcontrib>Kaihatu, J. M.</creatorcontrib><creatorcontrib>Holland, K. T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of Geophysical Research. C. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keen, T. R.</au><au>Rogers, W. E.</au><au>Dykes, J.</au><au>Kaihatu, J. M.</au><au>Holland, K. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining heterogeneous bottom friction distributions using a numerical wave model</atitle><jtitle>Journal of Geophysical Research. C. Oceans</jtitle><addtitle>J. Geophys. Res</addtitle><date>2007-08</date><risdate>2007</risdate><volume>112</volume><issue>C8</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>This paper describes a method for estimating spatially variable bottom roughness lengths (kb) in friction‐dominated coastal regions where dense measurements of the significant wave height are available. The method utilizes a numerical wave model to calculate wavefields. The model‐predicted significant wave height is compared to a control simulation with a known kb field, which is a proxy for measured wave heights. The error is used in combination with an influence matrix to successively correct the bottom roughness field. This predictor‐corrector calculation is completed in a series of analysis cycles. The method is demonstrated in an idealized basin with different kb distributions. The test cases simulate swell propagating over a sloping beach. The original kb fields are recovered in a reasonable number of analysis cycles but the method is limited by the influence of bottom friction on the wave height. The inversion is shown to be robust in the presence of errors in the measured wavefield as well as random bathymetry errors. However, the inversion fails if bathymetry errors are large and/or systematic because the friction error is not substantially greater than the error from bathymetry, which is also a key parameter for calculating the wave height. Thus it is important to select parameters and variables that have well‐defined dependencies in the numerical wave model for this procedure to be effective.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005JC003309</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. C. Oceans, 2007-08, Vol.112 (C8), p.n/a
issn 0148-0227
2169-9275
2156-2202
2169-9291
language eng
recordid cdi_proquest_miscellaneous_20463313
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects bottom dissipation
data assimilation
Earth sciences
Earth, ocean, space
Exact sciences and technology
Marine
numerical wave model
title Determining heterogeneous bottom friction distributions using a numerical wave model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20heterogeneous%20bottom%20friction%20distributions%20using%20a%20numerical%20wave%20model&rft.jtitle=Journal%20of%20Geophysical%20Research.%20C.%20Oceans&rft.au=Keen,%20T.%20R.&rft.date=2007-08&rft.volume=112&rft.issue=C8&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2005JC003309&rft_dat=%3Cproquest_cross%3E1919963517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919963517&rft_id=info:pmid/&rfr_iscdi=true