Adriamycin‐mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain

Adriamycin (ADR), a potent anti‐tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose‐limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood–brain barrier. Some cancer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2007-01, Vol.100 (1), p.191-201
Hauptverfasser: Tangpong, Jitbanjong, Cole, Marsha P., Sultana, Rukhsana, Estus, Steven, Vore, Mary, St. Clair, William, Ratanachaiyavong, Suvina, St. Clair, Daret K., Butterfield, D. Allan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1
container_start_page 191
container_title Journal of neurochemistry
container_volume 100
creator Tangpong, Jitbanjong
Cole, Marsha P.
Sultana, Rukhsana
Estus, Steven
Vore, Mary
St. Clair, William
Ratanachaiyavong, Suvina
St. Clair, Daret K.
Butterfield, D. Allan
description Adriamycin (ADR), a potent anti‐tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose‐limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood–brain barrier. Some cancer patients receiving ADR treatment develop a transient memory loss, inability to handle complex tasks etc., often referred to by patients as chemobrain. We previously demonstrated that ADR causes CNS toxicity, in part, via systemic release of cytokines and subsequent generation of reactive oxygen and nitrogen species (RONS) in the brain. Here, we demonstrate that treatment with ADR led to an increased circulating level of tumor necrosis factor‐alpha in wild‐type mice and in mice deficient in the inducible form of nitric oxide (iNOSKO). However, the decline in mitochondrial respiration and mitochondrial protein nitration after ADR treatment was observed only in wild‐type mice, not in the iNOSKO mice. Importantly, the activity of a major mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), was reduced and the protein was nitrated. Together, these results suggest that NO is an important mediator, coupling the effect of ADR with cytokine production and subsequent activation of iNOS expression. We also identified the mitochondrion as an important target of ADR‐induced NO‐mediated CNS injury.
doi_str_mv 10.1111/j.1471-4159.2006.04179.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20462179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20462179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5059-83f2aa3bc5ad52ccbaac3057d89724e43e157f4a6c646ab5b1df246064d2a3de3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EokPhFZCFBLsE23H-kFhUI8qPKtjA2rqxbzoexc5gJ2Vmx7Y7npEnwemMqMQKb65lf-fq3HsIoZzlPJ3X25zLmmeSl20uGKtyJnnd5vsHZPX34yFZMSZEVjApzsiTGLeM8UpW_DE547UQtSzaFbm9MMGCO2jrf__85dBYmNBQb6cAkx09HXvqwF-Dx4g0zjsM494apMZGN0-QHq2n0wapRp80A_UYbsY50niIE7o36Tva682U6jTegQ71BnySL731Bt3YBbD-KXnUwxDx2amek2-X776uP2RXX95_XF9cZbpkZZs1RS8Aik6XYEqhdQegC1bWpmlrIVEWyMu6l1DpNCt0ZcdNL2TFKmkEFAaLc_Lq2HcXxu8zxkk5GzUOQxox-VaCyUqkbSbwxT_gdpyDT94SU5WyaeoqQc0R0mGMMWCvdsE6CAfFmVqyUlu1RKKWSNSSlbrLSu2T9Pmp_9ylxd8LT-Ek4OUJgKhh6AN4beM91ywWhEjc2yP3ww54-G8D6tPn9XIr_gASebOD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206548876</pqid></control><display><type>article</type><title>Adriamycin‐mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Tangpong, Jitbanjong ; Cole, Marsha P. ; Sultana, Rukhsana ; Estus, Steven ; Vore, Mary ; St. Clair, William ; Ratanachaiyavong, Suvina ; St. Clair, Daret K. ; Butterfield, D. Allan</creator><creatorcontrib>Tangpong, Jitbanjong ; Cole, Marsha P. ; Sultana, Rukhsana ; Estus, Steven ; Vore, Mary ; St. Clair, William ; Ratanachaiyavong, Suvina ; St. Clair, Daret K. ; Butterfield, D. Allan</creatorcontrib><description>Adriamycin (ADR), a potent anti‐tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose‐limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood–brain barrier. Some cancer patients receiving ADR treatment develop a transient memory loss, inability to handle complex tasks etc., often referred to by patients as chemobrain. We previously demonstrated that ADR causes CNS toxicity, in part, via systemic release of cytokines and subsequent generation of reactive oxygen and nitrogen species (RONS) in the brain. Here, we demonstrate that treatment with ADR led to an increased circulating level of tumor necrosis factor‐alpha in wild‐type mice and in mice deficient in the inducible form of nitric oxide (iNOSKO). However, the decline in mitochondrial respiration and mitochondrial protein nitration after ADR treatment was observed only in wild‐type mice, not in the iNOSKO mice. Importantly, the activity of a major mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), was reduced and the protein was nitrated. Together, these results suggest that NO is an important mediator, coupling the effect of ADR with cytokine production and subsequent activation of iNOS expression. We also identified the mitochondrion as an important target of ADR‐induced NO‐mediated CNS injury.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2006.04179.x</identifier><identifier>PMID: 17227439</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>adriamycin‐induced chemobrain ; Animals ; Antibiotics, Antineoplastic - pharmacology ; Biochemistry ; Biological and medical sciences ; Blotting, Western - methods ; Bones, joints and connective tissue. Antiinflammatory agents ; Brain Chemistry - drug effects ; Central Nervous System - drug effects ; central nervous system toxicity ; Cytokines ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Doxorubicin - pharmacology ; Electrophoresis, Gel, Two-Dimensional - methods ; Enzyme-Linked Immunosorbent Assay - methods ; Enzymes ; Gene expression ; Gene Expression - drug effects ; inducible nitric oxide synthase knockout mice ; Male ; manganese superoxide dismutase ; Medical sciences ; Mice ; Mice, Knockout ; Mitochondria - drug effects ; mitochondrial respiration ; Neurology ; Neurosciences ; Nitric oxide ; Nitric Oxide Synthase Type II - deficiency ; Pharmacology. Drug treatments ; Reverse Transcriptase Polymerase Chain Reaction - methods ; RNA, Messenger - metabolism ; Superoxide Dismutase - metabolism ; Tumor Necrosis Factor-alpha - metabolism ; Tyrosine - analogs &amp; derivatives ; Tyrosine - metabolism</subject><ispartof>Journal of neurochemistry, 2007-01, Vol.100 (1), p.191-201</ispartof><rights>2007 INIST-CNRS</rights><rights>2007 The Authors Journal Compilation 2007 International Society for Neurochemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5059-83f2aa3bc5ad52ccbaac3057d89724e43e157f4a6c646ab5b1df246064d2a3de3</citedby><cites>FETCH-LOGICAL-c5059-83f2aa3bc5ad52ccbaac3057d89724e43e157f4a6c646ab5b1df246064d2a3de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1471-4159.2006.04179.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1471-4159.2006.04179.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,4010,27900,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18488722$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17227439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tangpong, Jitbanjong</creatorcontrib><creatorcontrib>Cole, Marsha P.</creatorcontrib><creatorcontrib>Sultana, Rukhsana</creatorcontrib><creatorcontrib>Estus, Steven</creatorcontrib><creatorcontrib>Vore, Mary</creatorcontrib><creatorcontrib>St. Clair, William</creatorcontrib><creatorcontrib>Ratanachaiyavong, Suvina</creatorcontrib><creatorcontrib>St. Clair, Daret K.</creatorcontrib><creatorcontrib>Butterfield, D. Allan</creatorcontrib><title>Adriamycin‐mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Adriamycin (ADR), a potent anti‐tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose‐limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood–brain barrier. Some cancer patients receiving ADR treatment develop a transient memory loss, inability to handle complex tasks etc., often referred to by patients as chemobrain. We previously demonstrated that ADR causes CNS toxicity, in part, via systemic release of cytokines and subsequent generation of reactive oxygen and nitrogen species (RONS) in the brain. Here, we demonstrate that treatment with ADR led to an increased circulating level of tumor necrosis factor‐alpha in wild‐type mice and in mice deficient in the inducible form of nitric oxide (iNOSKO). However, the decline in mitochondrial respiration and mitochondrial protein nitration after ADR treatment was observed only in wild‐type mice, not in the iNOSKO mice. Importantly, the activity of a major mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), was reduced and the protein was nitrated. Together, these results suggest that NO is an important mediator, coupling the effect of ADR with cytokine production and subsequent activation of iNOS expression. We also identified the mitochondrion as an important target of ADR‐induced NO‐mediated CNS injury.</description><subject>adriamycin‐induced chemobrain</subject><subject>Animals</subject><subject>Antibiotics, Antineoplastic - pharmacology</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western - methods</subject><subject>Bones, joints and connective tissue. Antiinflammatory agents</subject><subject>Brain Chemistry - drug effects</subject><subject>Central Nervous System - drug effects</subject><subject>central nervous system toxicity</subject><subject>Cytokines</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Doxorubicin - pharmacology</subject><subject>Electrophoresis, Gel, Two-Dimensional - methods</subject><subject>Enzyme-Linked Immunosorbent Assay - methods</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Gene Expression - drug effects</subject><subject>inducible nitric oxide synthase knockout mice</subject><subject>Male</subject><subject>manganese superoxide dismutase</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria - drug effects</subject><subject>mitochondrial respiration</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Nitric oxide</subject><subject>Nitric Oxide Synthase Type II - deficiency</subject><subject>Pharmacology. Drug treatments</subject><subject>Reverse Transcriptase Polymerase Chain Reaction - methods</subject><subject>RNA, Messenger - metabolism</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tyrosine - analogs &amp; derivatives</subject><subject>Tyrosine - metabolism</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EokPhFZCFBLsE23H-kFhUI8qPKtjA2rqxbzoexc5gJ2Vmx7Y7npEnwemMqMQKb65lf-fq3HsIoZzlPJ3X25zLmmeSl20uGKtyJnnd5vsHZPX34yFZMSZEVjApzsiTGLeM8UpW_DE547UQtSzaFbm9MMGCO2jrf__85dBYmNBQb6cAkx09HXvqwF-Dx4g0zjsM494apMZGN0-QHq2n0wapRp80A_UYbsY50niIE7o36Tva682U6jTegQ71BnySL731Bt3YBbD-KXnUwxDx2amek2-X776uP2RXX95_XF9cZbpkZZs1RS8Aik6XYEqhdQegC1bWpmlrIVEWyMu6l1DpNCt0ZcdNL2TFKmkEFAaLc_Lq2HcXxu8zxkk5GzUOQxox-VaCyUqkbSbwxT_gdpyDT94SU5WyaeoqQc0R0mGMMWCvdsE6CAfFmVqyUlu1RKKWSNSSlbrLSu2T9Pmp_9ylxd8LT-Ek4OUJgKhh6AN4beM91ywWhEjc2yP3ww54-G8D6tPn9XIr_gASebOD</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Tangpong, Jitbanjong</creator><creator>Cole, Marsha P.</creator><creator>Sultana, Rukhsana</creator><creator>Estus, Steven</creator><creator>Vore, Mary</creator><creator>St. Clair, William</creator><creator>Ratanachaiyavong, Suvina</creator><creator>St. Clair, Daret K.</creator><creator>Butterfield, D. Allan</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>200701</creationdate><title>Adriamycin‐mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain</title><author>Tangpong, Jitbanjong ; Cole, Marsha P. ; Sultana, Rukhsana ; Estus, Steven ; Vore, Mary ; St. Clair, William ; Ratanachaiyavong, Suvina ; St. Clair, Daret K. ; Butterfield, D. Allan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5059-83f2aa3bc5ad52ccbaac3057d89724e43e157f4a6c646ab5b1df246064d2a3de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>adriamycin‐induced chemobrain</topic><topic>Animals</topic><topic>Antibiotics, Antineoplastic - pharmacology</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western - methods</topic><topic>Bones, joints and connective tissue. Antiinflammatory agents</topic><topic>Brain Chemistry - drug effects</topic><topic>Central Nervous System - drug effects</topic><topic>central nervous system toxicity</topic><topic>Cytokines</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Doxorubicin - pharmacology</topic><topic>Electrophoresis, Gel, Two-Dimensional - methods</topic><topic>Enzyme-Linked Immunosorbent Assay - methods</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Gene Expression - drug effects</topic><topic>inducible nitric oxide synthase knockout mice</topic><topic>Male</topic><topic>manganese superoxide dismutase</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria - drug effects</topic><topic>mitochondrial respiration</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Nitric oxide</topic><topic>Nitric Oxide Synthase Type II - deficiency</topic><topic>Pharmacology. Drug treatments</topic><topic>Reverse Transcriptase Polymerase Chain Reaction - methods</topic><topic>RNA, Messenger - metabolism</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tyrosine - analogs &amp; derivatives</topic><topic>Tyrosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tangpong, Jitbanjong</creatorcontrib><creatorcontrib>Cole, Marsha P.</creatorcontrib><creatorcontrib>Sultana, Rukhsana</creatorcontrib><creatorcontrib>Estus, Steven</creatorcontrib><creatorcontrib>Vore, Mary</creatorcontrib><creatorcontrib>St. Clair, William</creatorcontrib><creatorcontrib>Ratanachaiyavong, Suvina</creatorcontrib><creatorcontrib>St. Clair, Daret K.</creatorcontrib><creatorcontrib>Butterfield, D. Allan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tangpong, Jitbanjong</au><au>Cole, Marsha P.</au><au>Sultana, Rukhsana</au><au>Estus, Steven</au><au>Vore, Mary</au><au>St. Clair, William</au><au>Ratanachaiyavong, Suvina</au><au>St. Clair, Daret K.</au><au>Butterfield, D. Allan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adriamycin‐mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2007-01</date><risdate>2007</risdate><volume>100</volume><issue>1</issue><spage>191</spage><epage>201</epage><pages>191-201</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>Adriamycin (ADR), a potent anti‐tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose‐limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood–brain barrier. Some cancer patients receiving ADR treatment develop a transient memory loss, inability to handle complex tasks etc., often referred to by patients as chemobrain. We previously demonstrated that ADR causes CNS toxicity, in part, via systemic release of cytokines and subsequent generation of reactive oxygen and nitrogen species (RONS) in the brain. Here, we demonstrate that treatment with ADR led to an increased circulating level of tumor necrosis factor‐alpha in wild‐type mice and in mice deficient in the inducible form of nitric oxide (iNOSKO). However, the decline in mitochondrial respiration and mitochondrial protein nitration after ADR treatment was observed only in wild‐type mice, not in the iNOSKO mice. Importantly, the activity of a major mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), was reduced and the protein was nitrated. Together, these results suggest that NO is an important mediator, coupling the effect of ADR with cytokine production and subsequent activation of iNOS expression. We also identified the mitochondrion as an important target of ADR‐induced NO‐mediated CNS injury.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>17227439</pmid><doi>10.1111/j.1471-4159.2006.04179.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2007-01, Vol.100 (1), p.191-201
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_20462179
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects adriamycin‐induced chemobrain
Animals
Antibiotics, Antineoplastic - pharmacology
Biochemistry
Biological and medical sciences
Blotting, Western - methods
Bones, joints and connective tissue. Antiinflammatory agents
Brain Chemistry - drug effects
Central Nervous System - drug effects
central nervous system toxicity
Cytokines
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Doxorubicin - pharmacology
Electrophoresis, Gel, Two-Dimensional - methods
Enzyme-Linked Immunosorbent Assay - methods
Enzymes
Gene expression
Gene Expression - drug effects
inducible nitric oxide synthase knockout mice
Male
manganese superoxide dismutase
Medical sciences
Mice
Mice, Knockout
Mitochondria - drug effects
mitochondrial respiration
Neurology
Neurosciences
Nitric oxide
Nitric Oxide Synthase Type II - deficiency
Pharmacology. Drug treatments
Reverse Transcriptase Polymerase Chain Reaction - methods
RNA, Messenger - metabolism
Superoxide Dismutase - metabolism
Tumor Necrosis Factor-alpha - metabolism
Tyrosine - analogs & derivatives
Tyrosine - metabolism
title Adriamycin‐mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adriamycin%E2%80%90mediated%20nitration%20of%20manganese%20superoxide%20dismutase%20in%20the%20central%20nervous%20system:%20insight%20into%20the%20mechanism%20of%20chemobrain&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Tangpong,%20Jitbanjong&rft.date=2007-01&rft.volume=100&rft.issue=1&rft.spage=191&rft.epage=201&rft.pages=191-201&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2006.04179.x&rft_dat=%3Cproquest_cross%3E20462179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206548876&rft_id=info:pmid/17227439&rfr_iscdi=true