Adriamycin‐mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain
Adriamycin (ADR), a potent anti‐tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose‐limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood–brain barrier. Some cancer...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2007-01, Vol.100 (1), p.191-201 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 1 |
container_start_page | 191 |
container_title | Journal of neurochemistry |
container_volume | 100 |
creator | Tangpong, Jitbanjong Cole, Marsha P. Sultana, Rukhsana Estus, Steven Vore, Mary St. Clair, William Ratanachaiyavong, Suvina St. Clair, Daret K. Butterfield, D. Allan |
description | Adriamycin (ADR), a potent anti‐tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose‐limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood–brain barrier. Some cancer patients receiving ADR treatment develop a transient memory loss, inability to handle complex tasks etc., often referred to by patients as chemobrain. We previously demonstrated that ADR causes CNS toxicity, in part, via systemic release of cytokines and subsequent generation of reactive oxygen and nitrogen species (RONS) in the brain. Here, we demonstrate that treatment with ADR led to an increased circulating level of tumor necrosis factor‐alpha in wild‐type mice and in mice deficient in the inducible form of nitric oxide (iNOSKO). However, the decline in mitochondrial respiration and mitochondrial protein nitration after ADR treatment was observed only in wild‐type mice, not in the iNOSKO mice. Importantly, the activity of a major mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), was reduced and the protein was nitrated. Together, these results suggest that NO is an important mediator, coupling the effect of ADR with cytokine production and subsequent activation of iNOS expression. We also identified the mitochondrion as an important target of ADR‐induced NO‐mediated CNS injury. |
doi_str_mv | 10.1111/j.1471-4159.2006.04179.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20462179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20462179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5059-83f2aa3bc5ad52ccbaac3057d89724e43e157f4a6c646ab5b1df246064d2a3de3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EokPhFZCFBLsE23H-kFhUI8qPKtjA2rqxbzoexc5gJ2Vmx7Y7npEnwemMqMQKb65lf-fq3HsIoZzlPJ3X25zLmmeSl20uGKtyJnnd5vsHZPX34yFZMSZEVjApzsiTGLeM8UpW_DE547UQtSzaFbm9MMGCO2jrf__85dBYmNBQb6cAkx09HXvqwF-Dx4g0zjsM494apMZGN0-QHq2n0wapRp80A_UYbsY50niIE7o36Tva682U6jTegQ71BnySL731Bt3YBbD-KXnUwxDx2amek2-X776uP2RXX95_XF9cZbpkZZs1RS8Aik6XYEqhdQegC1bWpmlrIVEWyMu6l1DpNCt0ZcdNL2TFKmkEFAaLc_Lq2HcXxu8zxkk5GzUOQxox-VaCyUqkbSbwxT_gdpyDT94SU5WyaeoqQc0R0mGMMWCvdsE6CAfFmVqyUlu1RKKWSNSSlbrLSu2T9Pmp_9ylxd8LT-Ek4OUJgKhh6AN4beM91ywWhEjc2yP3ww54-G8D6tPn9XIr_gASebOD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206548876</pqid></control><display><type>article</type><title>Adriamycin‐mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Tangpong, Jitbanjong ; Cole, Marsha P. ; Sultana, Rukhsana ; Estus, Steven ; Vore, Mary ; St. Clair, William ; Ratanachaiyavong, Suvina ; St. Clair, Daret K. ; Butterfield, D. Allan</creator><creatorcontrib>Tangpong, Jitbanjong ; Cole, Marsha P. ; Sultana, Rukhsana ; Estus, Steven ; Vore, Mary ; St. Clair, William ; Ratanachaiyavong, Suvina ; St. Clair, Daret K. ; Butterfield, D. Allan</creatorcontrib><description>Adriamycin (ADR), a potent anti‐tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose‐limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood–brain barrier. Some cancer patients receiving ADR treatment develop a transient memory loss, inability to handle complex tasks etc., often referred to by patients as chemobrain. We previously demonstrated that ADR causes CNS toxicity, in part, via systemic release of cytokines and subsequent generation of reactive oxygen and nitrogen species (RONS) in the brain. Here, we demonstrate that treatment with ADR led to an increased circulating level of tumor necrosis factor‐alpha in wild‐type mice and in mice deficient in the inducible form of nitric oxide (iNOSKO). However, the decline in mitochondrial respiration and mitochondrial protein nitration after ADR treatment was observed only in wild‐type mice, not in the iNOSKO mice. Importantly, the activity of a major mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), was reduced and the protein was nitrated. Together, these results suggest that NO is an important mediator, coupling the effect of ADR with cytokine production and subsequent activation of iNOS expression. We also identified the mitochondrion as an important target of ADR‐induced NO‐mediated CNS injury.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2006.04179.x</identifier><identifier>PMID: 17227439</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>adriamycin‐induced chemobrain ; Animals ; Antibiotics, Antineoplastic - pharmacology ; Biochemistry ; Biological and medical sciences ; Blotting, Western - methods ; Bones, joints and connective tissue. Antiinflammatory agents ; Brain Chemistry - drug effects ; Central Nervous System - drug effects ; central nervous system toxicity ; Cytokines ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Doxorubicin - pharmacology ; Electrophoresis, Gel, Two-Dimensional - methods ; Enzyme-Linked Immunosorbent Assay - methods ; Enzymes ; Gene expression ; Gene Expression - drug effects ; inducible nitric oxide synthase knockout mice ; Male ; manganese superoxide dismutase ; Medical sciences ; Mice ; Mice, Knockout ; Mitochondria - drug effects ; mitochondrial respiration ; Neurology ; Neurosciences ; Nitric oxide ; Nitric Oxide Synthase Type II - deficiency ; Pharmacology. Drug treatments ; Reverse Transcriptase Polymerase Chain Reaction - methods ; RNA, Messenger - metabolism ; Superoxide Dismutase - metabolism ; Tumor Necrosis Factor-alpha - metabolism ; Tyrosine - analogs & derivatives ; Tyrosine - metabolism</subject><ispartof>Journal of neurochemistry, 2007-01, Vol.100 (1), p.191-201</ispartof><rights>2007 INIST-CNRS</rights><rights>2007 The Authors Journal Compilation 2007 International Society for Neurochemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5059-83f2aa3bc5ad52ccbaac3057d89724e43e157f4a6c646ab5b1df246064d2a3de3</citedby><cites>FETCH-LOGICAL-c5059-83f2aa3bc5ad52ccbaac3057d89724e43e157f4a6c646ab5b1df246064d2a3de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1471-4159.2006.04179.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1471-4159.2006.04179.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,4010,27900,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18488722$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17227439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tangpong, Jitbanjong</creatorcontrib><creatorcontrib>Cole, Marsha P.</creatorcontrib><creatorcontrib>Sultana, Rukhsana</creatorcontrib><creatorcontrib>Estus, Steven</creatorcontrib><creatorcontrib>Vore, Mary</creatorcontrib><creatorcontrib>St. Clair, William</creatorcontrib><creatorcontrib>Ratanachaiyavong, Suvina</creatorcontrib><creatorcontrib>St. Clair, Daret K.</creatorcontrib><creatorcontrib>Butterfield, D. Allan</creatorcontrib><title>Adriamycin‐mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Adriamycin (ADR), a potent anti‐tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose‐limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood–brain barrier. Some cancer patients receiving ADR treatment develop a transient memory loss, inability to handle complex tasks etc., often referred to by patients as chemobrain. We previously demonstrated that ADR causes CNS toxicity, in part, via systemic release of cytokines and subsequent generation of reactive oxygen and nitrogen species (RONS) in the brain. Here, we demonstrate that treatment with ADR led to an increased circulating level of tumor necrosis factor‐alpha in wild‐type mice and in mice deficient in the inducible form of nitric oxide (iNOSKO). However, the decline in mitochondrial respiration and mitochondrial protein nitration after ADR treatment was observed only in wild‐type mice, not in the iNOSKO mice. Importantly, the activity of a major mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), was reduced and the protein was nitrated. Together, these results suggest that NO is an important mediator, coupling the effect of ADR with cytokine production and subsequent activation of iNOS expression. We also identified the mitochondrion as an important target of ADR‐induced NO‐mediated CNS injury.</description><subject>adriamycin‐induced chemobrain</subject><subject>Animals</subject><subject>Antibiotics, Antineoplastic - pharmacology</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western - methods</subject><subject>Bones, joints and connective tissue. Antiinflammatory agents</subject><subject>Brain Chemistry - drug effects</subject><subject>Central Nervous System - drug effects</subject><subject>central nervous system toxicity</subject><subject>Cytokines</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Doxorubicin - pharmacology</subject><subject>Electrophoresis, Gel, Two-Dimensional - methods</subject><subject>Enzyme-Linked Immunosorbent Assay - methods</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Gene Expression - drug effects</subject><subject>inducible nitric oxide synthase knockout mice</subject><subject>Male</subject><subject>manganese superoxide dismutase</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria - drug effects</subject><subject>mitochondrial respiration</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Nitric oxide</subject><subject>Nitric Oxide Synthase Type II - deficiency</subject><subject>Pharmacology. Drug treatments</subject><subject>Reverse Transcriptase Polymerase Chain Reaction - methods</subject><subject>RNA, Messenger - metabolism</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tyrosine - analogs & derivatives</subject><subject>Tyrosine - metabolism</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EokPhFZCFBLsE23H-kFhUI8qPKtjA2rqxbzoexc5gJ2Vmx7Y7npEnwemMqMQKb65lf-fq3HsIoZzlPJ3X25zLmmeSl20uGKtyJnnd5vsHZPX34yFZMSZEVjApzsiTGLeM8UpW_DE547UQtSzaFbm9MMGCO2jrf__85dBYmNBQb6cAkx09HXvqwF-Dx4g0zjsM494apMZGN0-QHq2n0wapRp80A_UYbsY50niIE7o36Tva682U6jTegQ71BnySL731Bt3YBbD-KXnUwxDx2amek2-X776uP2RXX95_XF9cZbpkZZs1RS8Aik6XYEqhdQegC1bWpmlrIVEWyMu6l1DpNCt0ZcdNL2TFKmkEFAaLc_Lq2HcXxu8zxkk5GzUOQxox-VaCyUqkbSbwxT_gdpyDT94SU5WyaeoqQc0R0mGMMWCvdsE6CAfFmVqyUlu1RKKWSNSSlbrLSu2T9Pmp_9ylxd8LT-Ek4OUJgKhh6AN4beM91ywWhEjc2yP3ww54-G8D6tPn9XIr_gASebOD</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Tangpong, Jitbanjong</creator><creator>Cole, Marsha P.</creator><creator>Sultana, Rukhsana</creator><creator>Estus, Steven</creator><creator>Vore, Mary</creator><creator>St. Clair, William</creator><creator>Ratanachaiyavong, Suvina</creator><creator>St. Clair, Daret K.</creator><creator>Butterfield, D. Allan</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>200701</creationdate><title>Adriamycin‐mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain</title><author>Tangpong, Jitbanjong ; Cole, Marsha P. ; Sultana, Rukhsana ; Estus, Steven ; Vore, Mary ; St. Clair, William ; Ratanachaiyavong, Suvina ; St. Clair, Daret K. ; Butterfield, D. Allan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5059-83f2aa3bc5ad52ccbaac3057d89724e43e157f4a6c646ab5b1df246064d2a3de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>adriamycin‐induced chemobrain</topic><topic>Animals</topic><topic>Antibiotics, Antineoplastic - pharmacology</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western - methods</topic><topic>Bones, joints and connective tissue. Antiinflammatory agents</topic><topic>Brain Chemistry - drug effects</topic><topic>Central Nervous System - drug effects</topic><topic>central nervous system toxicity</topic><topic>Cytokines</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Doxorubicin - pharmacology</topic><topic>Electrophoresis, Gel, Two-Dimensional - methods</topic><topic>Enzyme-Linked Immunosorbent Assay - methods</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Gene Expression - drug effects</topic><topic>inducible nitric oxide synthase knockout mice</topic><topic>Male</topic><topic>manganese superoxide dismutase</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria - drug effects</topic><topic>mitochondrial respiration</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Nitric oxide</topic><topic>Nitric Oxide Synthase Type II - deficiency</topic><topic>Pharmacology. Drug treatments</topic><topic>Reverse Transcriptase Polymerase Chain Reaction - methods</topic><topic>RNA, Messenger - metabolism</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tyrosine - analogs & derivatives</topic><topic>Tyrosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tangpong, Jitbanjong</creatorcontrib><creatorcontrib>Cole, Marsha P.</creatorcontrib><creatorcontrib>Sultana, Rukhsana</creatorcontrib><creatorcontrib>Estus, Steven</creatorcontrib><creatorcontrib>Vore, Mary</creatorcontrib><creatorcontrib>St. Clair, William</creatorcontrib><creatorcontrib>Ratanachaiyavong, Suvina</creatorcontrib><creatorcontrib>St. Clair, Daret K.</creatorcontrib><creatorcontrib>Butterfield, D. Allan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tangpong, Jitbanjong</au><au>Cole, Marsha P.</au><au>Sultana, Rukhsana</au><au>Estus, Steven</au><au>Vore, Mary</au><au>St. Clair, William</au><au>Ratanachaiyavong, Suvina</au><au>St. Clair, Daret K.</au><au>Butterfield, D. Allan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adriamycin‐mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2007-01</date><risdate>2007</risdate><volume>100</volume><issue>1</issue><spage>191</spage><epage>201</epage><pages>191-201</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>Adriamycin (ADR), a potent anti‐tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose‐limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood–brain barrier. Some cancer patients receiving ADR treatment develop a transient memory loss, inability to handle complex tasks etc., often referred to by patients as chemobrain. We previously demonstrated that ADR causes CNS toxicity, in part, via systemic release of cytokines and subsequent generation of reactive oxygen and nitrogen species (RONS) in the brain. Here, we demonstrate that treatment with ADR led to an increased circulating level of tumor necrosis factor‐alpha in wild‐type mice and in mice deficient in the inducible form of nitric oxide (iNOSKO). However, the decline in mitochondrial respiration and mitochondrial protein nitration after ADR treatment was observed only in wild‐type mice, not in the iNOSKO mice. Importantly, the activity of a major mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), was reduced and the protein was nitrated. Together, these results suggest that NO is an important mediator, coupling the effect of ADR with cytokine production and subsequent activation of iNOS expression. We also identified the mitochondrion as an important target of ADR‐induced NO‐mediated CNS injury.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>17227439</pmid><doi>10.1111/j.1471-4159.2006.04179.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3042 |
ispartof | Journal of neurochemistry, 2007-01, Vol.100 (1), p.191-201 |
issn | 0022-3042 1471-4159 |
language | eng |
recordid | cdi_proquest_miscellaneous_20462179 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | adriamycin‐induced chemobrain Animals Antibiotics, Antineoplastic - pharmacology Biochemistry Biological and medical sciences Blotting, Western - methods Bones, joints and connective tissue. Antiinflammatory agents Brain Chemistry - drug effects Central Nervous System - drug effects central nervous system toxicity Cytokines Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Doxorubicin - pharmacology Electrophoresis, Gel, Two-Dimensional - methods Enzyme-Linked Immunosorbent Assay - methods Enzymes Gene expression Gene Expression - drug effects inducible nitric oxide synthase knockout mice Male manganese superoxide dismutase Medical sciences Mice Mice, Knockout Mitochondria - drug effects mitochondrial respiration Neurology Neurosciences Nitric oxide Nitric Oxide Synthase Type II - deficiency Pharmacology. Drug treatments Reverse Transcriptase Polymerase Chain Reaction - methods RNA, Messenger - metabolism Superoxide Dismutase - metabolism Tumor Necrosis Factor-alpha - metabolism Tyrosine - analogs & derivatives Tyrosine - metabolism |
title | Adriamycin‐mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adriamycin%E2%80%90mediated%20nitration%20of%20manganese%20superoxide%20dismutase%20in%20the%20central%20nervous%20system:%20insight%20into%20the%20mechanism%20of%20chemobrain&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Tangpong,%20Jitbanjong&rft.date=2007-01&rft.volume=100&rft.issue=1&rft.spage=191&rft.epage=201&rft.pages=191-201&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2006.04179.x&rft_dat=%3Cproquest_cross%3E20462179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206548876&rft_id=info:pmid/17227439&rfr_iscdi=true |