Singular value decomposition ghost imaging

The singular value decomposition ghost imaging (SVDGI) is proposed to enhance the fidelity of computational ghost imaging (GI) by constructing a measurement matrix using singular value decomposition (SVD) transform. After SVD transform on a random matrix, the non-zero elements of singular value matr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2018-05, Vol.26 (10), p.12948-12958
Hauptverfasser: Zhang, Xue, Meng, Xiangfeng, Yang, Xiulun, Wang, Yurong, Yin, Yongkai, Li, Xianye, Peng, Xiang, He, Wenqi, Dong, Guoyan, Chen, Hongyi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12958
container_issue 10
container_start_page 12948
container_title Optics express
container_volume 26
creator Zhang, Xue
Meng, Xiangfeng
Yang, Xiulun
Wang, Yurong
Yin, Yongkai
Li, Xianye
Peng, Xiang
He, Wenqi
Dong, Guoyan
Chen, Hongyi
description The singular value decomposition ghost imaging (SVDGI) is proposed to enhance the fidelity of computational ghost imaging (GI) by constructing a measurement matrix using singular value decomposition (SVD) transform. After SVD transform on a random matrix, the non-zero elements of singular value matrix are all made equal to 1.0, then the measurement matrix is acquired by inverse SVD transform. Eventually, the original objects can be reconstructed by multiplying the transposition of the matrix by a series of collected intensity. SVDGI enables the reconstruction of an N-pixel image using much less than N measurements, and perfectly reconstructs original object with N measurements. Both the simulated and the optical experimental results show that SVDGI always costs less time to accomplish better works. Firstly, it is at least ten times faster than GI and differential ghost imaging (DGI), and several orders of magnitude faster than pseudo-inverse ghost imaging (PGI). Secondly, in comparison with GI, the clarity of SVDGI can get sharply improved, and it is more robust than the other three methods so that it yields a clearer image in the noisy environment.
doi_str_mv 10.1364/OE.26.012948
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2045298336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2045298336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-b26b23fdbadb76005c036831be58e605950d329c39f888fc1781c643485c399e3</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMo7rp68yw9itg6-WiaHGWpH7DQg3oObZrWStvUphX23xvpKp7mZXh4mXkQusQQYcrZXZZGhEeAiWTiCK0xSBYyEMnxv7xCZ859AGCWyOQUrYgUgCkRa3Tz0vT13OZj8JW3swlKo203WNdMje2D-t26KWi6vPbUOTqp8taZi8PcoLeH9HX7FO6yx-ft_S7UlMgpLAgvCK3KIi-LhAPEGigXFBcmFoZDLGMoPaiprIQQlcaJwJozykTsd9LQDbpeeofRfs7GTaprnDZtm_fGzk4RYLF_gFLu0dsF1aN1bjSVGkZ_7bhXGNSPHZWlinC12PH41aF5LjpT_sG_Oug3yghdkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2045298336</pqid></control><display><type>article</type><title>Singular value decomposition ghost imaging</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Xue ; Meng, Xiangfeng ; Yang, Xiulun ; Wang, Yurong ; Yin, Yongkai ; Li, Xianye ; Peng, Xiang ; He, Wenqi ; Dong, Guoyan ; Chen, Hongyi</creator><creatorcontrib>Zhang, Xue ; Meng, Xiangfeng ; Yang, Xiulun ; Wang, Yurong ; Yin, Yongkai ; Li, Xianye ; Peng, Xiang ; He, Wenqi ; Dong, Guoyan ; Chen, Hongyi</creatorcontrib><description>The singular value decomposition ghost imaging (SVDGI) is proposed to enhance the fidelity of computational ghost imaging (GI) by constructing a measurement matrix using singular value decomposition (SVD) transform. After SVD transform on a random matrix, the non-zero elements of singular value matrix are all made equal to 1.0, then the measurement matrix is acquired by inverse SVD transform. Eventually, the original objects can be reconstructed by multiplying the transposition of the matrix by a series of collected intensity. SVDGI enables the reconstruction of an N-pixel image using much less than N measurements, and perfectly reconstructs original object with N measurements. Both the simulated and the optical experimental results show that SVDGI always costs less time to accomplish better works. Firstly, it is at least ten times faster than GI and differential ghost imaging (DGI), and several orders of magnitude faster than pseudo-inverse ghost imaging (PGI). Secondly, in comparison with GI, the clarity of SVDGI can get sharply improved, and it is more robust than the other three methods so that it yields a clearer image in the noisy environment.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.26.012948</identifier><identifier>PMID: 29801328</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2018-05, Vol.26 (10), p.12948-12958</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-b26b23fdbadb76005c036831be58e605950d329c39f888fc1781c643485c399e3</citedby><cites>FETCH-LOGICAL-c329t-b26b23fdbadb76005c036831be58e605950d329c39f888fc1781c643485c399e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29801328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Meng, Xiangfeng</creatorcontrib><creatorcontrib>Yang, Xiulun</creatorcontrib><creatorcontrib>Wang, Yurong</creatorcontrib><creatorcontrib>Yin, Yongkai</creatorcontrib><creatorcontrib>Li, Xianye</creatorcontrib><creatorcontrib>Peng, Xiang</creatorcontrib><creatorcontrib>He, Wenqi</creatorcontrib><creatorcontrib>Dong, Guoyan</creatorcontrib><creatorcontrib>Chen, Hongyi</creatorcontrib><title>Singular value decomposition ghost imaging</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>The singular value decomposition ghost imaging (SVDGI) is proposed to enhance the fidelity of computational ghost imaging (GI) by constructing a measurement matrix using singular value decomposition (SVD) transform. After SVD transform on a random matrix, the non-zero elements of singular value matrix are all made equal to 1.0, then the measurement matrix is acquired by inverse SVD transform. Eventually, the original objects can be reconstructed by multiplying the transposition of the matrix by a series of collected intensity. SVDGI enables the reconstruction of an N-pixel image using much less than N measurements, and perfectly reconstructs original object with N measurements. Both the simulated and the optical experimental results show that SVDGI always costs less time to accomplish better works. Firstly, it is at least ten times faster than GI and differential ghost imaging (DGI), and several orders of magnitude faster than pseudo-inverse ghost imaging (PGI). Secondly, in comparison with GI, the clarity of SVDGI can get sharply improved, and it is more robust than the other three methods so that it yields a clearer image in the noisy environment.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhoMo7rp68yw9itg6-WiaHGWpH7DQg3oObZrWStvUphX23xvpKp7mZXh4mXkQusQQYcrZXZZGhEeAiWTiCK0xSBYyEMnxv7xCZ859AGCWyOQUrYgUgCkRa3Tz0vT13OZj8JW3swlKo203WNdMje2D-t26KWi6vPbUOTqp8taZi8PcoLeH9HX7FO6yx-ft_S7UlMgpLAgvCK3KIi-LhAPEGigXFBcmFoZDLGMoPaiprIQQlcaJwJozykTsd9LQDbpeeofRfs7GTaprnDZtm_fGzk4RYLF_gFLu0dsF1aN1bjSVGkZ_7bhXGNSPHZWlinC12PH41aF5LjpT_sG_Oug3yghdkg</recordid><startdate>20180514</startdate><enddate>20180514</enddate><creator>Zhang, Xue</creator><creator>Meng, Xiangfeng</creator><creator>Yang, Xiulun</creator><creator>Wang, Yurong</creator><creator>Yin, Yongkai</creator><creator>Li, Xianye</creator><creator>Peng, Xiang</creator><creator>He, Wenqi</creator><creator>Dong, Guoyan</creator><creator>Chen, Hongyi</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180514</creationdate><title>Singular value decomposition ghost imaging</title><author>Zhang, Xue ; Meng, Xiangfeng ; Yang, Xiulun ; Wang, Yurong ; Yin, Yongkai ; Li, Xianye ; Peng, Xiang ; He, Wenqi ; Dong, Guoyan ; Chen, Hongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-b26b23fdbadb76005c036831be58e605950d329c39f888fc1781c643485c399e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Meng, Xiangfeng</creatorcontrib><creatorcontrib>Yang, Xiulun</creatorcontrib><creatorcontrib>Wang, Yurong</creatorcontrib><creatorcontrib>Yin, Yongkai</creatorcontrib><creatorcontrib>Li, Xianye</creatorcontrib><creatorcontrib>Peng, Xiang</creatorcontrib><creatorcontrib>He, Wenqi</creatorcontrib><creatorcontrib>Dong, Guoyan</creatorcontrib><creatorcontrib>Chen, Hongyi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xue</au><au>Meng, Xiangfeng</au><au>Yang, Xiulun</au><au>Wang, Yurong</au><au>Yin, Yongkai</au><au>Li, Xianye</au><au>Peng, Xiang</au><au>He, Wenqi</au><au>Dong, Guoyan</au><au>Chen, Hongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular value decomposition ghost imaging</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2018-05-14</date><risdate>2018</risdate><volume>26</volume><issue>10</issue><spage>12948</spage><epage>12958</epage><pages>12948-12958</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>The singular value decomposition ghost imaging (SVDGI) is proposed to enhance the fidelity of computational ghost imaging (GI) by constructing a measurement matrix using singular value decomposition (SVD) transform. After SVD transform on a random matrix, the non-zero elements of singular value matrix are all made equal to 1.0, then the measurement matrix is acquired by inverse SVD transform. Eventually, the original objects can be reconstructed by multiplying the transposition of the matrix by a series of collected intensity. SVDGI enables the reconstruction of an N-pixel image using much less than N measurements, and perfectly reconstructs original object with N measurements. Both the simulated and the optical experimental results show that SVDGI always costs less time to accomplish better works. Firstly, it is at least ten times faster than GI and differential ghost imaging (DGI), and several orders of magnitude faster than pseudo-inverse ghost imaging (PGI). Secondly, in comparison with GI, the clarity of SVDGI can get sharply improved, and it is more robust than the other three methods so that it yields a clearer image in the noisy environment.</abstract><cop>United States</cop><pmid>29801328</pmid><doi>10.1364/OE.26.012948</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2018-05, Vol.26 (10), p.12948-12958
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2045298336
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Singular value decomposition ghost imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20value%20decomposition%20ghost%20imaging&rft.jtitle=Optics%20express&rft.au=Zhang,%20Xue&rft.date=2018-05-14&rft.volume=26&rft.issue=10&rft.spage=12948&rft.epage=12958&rft.pages=12948-12958&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.26.012948&rft_dat=%3Cproquest_cross%3E2045298336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2045298336&rft_id=info:pmid/29801328&rfr_iscdi=true