Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: Comparison of in vitro and in silico results

LinB is a haloalkane dehalogenase found in Sphingobium indicum B90A, an aerobic bacterium isolated from contaminated soils of hexachlorocyclohexane (HCH) dumpsites. We showed that this enzyme also converts hexabromocyclododecanes (HBCDs). Here we give new insights in the kinetics and stereochemistry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2018-09, Vol.207, p.118-129
Hauptverfasser: Heeb, Norbert V., Mazenauer, Manuel, Wyss, Simon, Geueke, Birgit, Kohler, Hans-Peter E., Lienemann, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue
container_start_page 118
container_title Chemosphere (Oxford)
container_volume 207
creator Heeb, Norbert V.
Mazenauer, Manuel
Wyss, Simon
Geueke, Birgit
Kohler, Hans-Peter E.
Lienemann, Peter
description LinB is a haloalkane dehalogenase found in Sphingobium indicum B90A, an aerobic bacterium isolated from contaminated soils of hexachlorocyclohexane (HCH) dumpsites. We showed that this enzyme also converts hexabromocyclododecanes (HBCDs). Here we give new insights in the kinetics and stereochemistry of the enzymatic transformation of δ-HBCD, which resulted in the formation of two pentabromocyclododecanols (PBCDols) as first- (P1δ, P2δ) and two tetrabromocyclododecadiols (TBCDdiols) as second-generation products (T1δ, T2δ). Enzymatic transformations of δ-HBCD, α1-PBCDol, one of the transformation products, and α2-PBCDol, its enantiomer, were studied and modeled with Michaelis-Menten (MM) kinetics. Respective MM-parameters KM, vmax, kcat/KM indicated that δ-HBCD is the best LinB substrate followed by α2- and α1-PBCDol. The stereochemistry of these transformations was modeled in silico, investigating respective enzyme-substrate (ES) and enzyme-product (EP) complexes. One of the four predicted ES-complexes led to the PBCDol product P1δ, identical to α2-PBCDol with the 1R,2R,5S,6R,9R,10S-configuration. An SN2-like substitution of bromine at C6 of δ-HBCD by Asp-108 of LinB and subsequent hydrolysis of the alkyl-enzyme led to α2-PBCDol. Modeling results further indicate that backside attacks at C1, C9 and C10 are reasonable too, selectively binding leaving bromide ions in a halide pocket found in LinB. Docking with α2-PBCDol, also allowed productive enzyme binding. A TBCD-1,5-diol with the 1S,2S,5R,6R,9S,10R-configuration is the predicted second-generation product T1δ. In conclusion, in vitro- and in silico findings now allow a detailed description of step-wise enzymatic dehalohydroxylation reactions of δ-HBCD to specific PBCDols and TBCDdiols at Å-resolution and predictions of their stereochemistry. [Display omitted] •The dehalogenase LinB from Sphingobium Indicum converts δ-HBCD stereoselectively.•Two pentabromocyclododecanols and two tetrabromocyclododecadiols are formed.•Transformations of δ-HBCD, α1-and α2-PBCDol follow Michaelis-Menten kinetics.•Docking experiments revealed four enzyme-substrate complexes allowing SN2-type reactions.•One complex leads to the α2-PBCDol product with the 1R,2R,5S,6R,9R,10S-configuration.•Docking experiments predict 1S,2S,5R,6R,9S,10R-TBCD-1,5-diol as a second-generationproduct.
doi_str_mv 10.1016/j.chemosphere.2018.05.057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2045268541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653518309056</els_id><sourcerecordid>2045268541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-608eaa0b28dc952c35e7d33ecb23723e7c5b0cfeb0441108bfc7f2672ae286053</originalsourceid><addsrcrecordid>eNqNkEtuFDEQhi0EIkOSK0Rmx6YHP8btbnakeSRiJDawttzuasWjbntweSJNTpNDcAIOkDPhYRLEEumXavM_VB8hrzlbcsbrt5ulu4E54vYGEiwF482SqSL9jCx4o9uKi7Z5ThaMrVRVK6lOyCvEDWMlrNqX5ES0upVMyAXJX3yA7B1SGwaKuRTGQ7nHnPY0jnTtw2XlbLbT_g4G-vCzurrsPtCcbMAxptlmH8M72sV5a5PHGA4hH37d3_qc4p9WHyj6ybtIE-BuynhGXox2Qjh_vKfk-6eP37qrav3183X3fl05qXWuataAtawXzeBaJZxUoAcpwfVCaiFBO9UzN0LPVivOWdOPTo-i1sKCaGqm5Cl5c-zdpvhjB5hN-cvBNNkAcYdGFD6ibtSKF2t7tLoUEROMZpv8bNPecGYO0M3G_APdHKAbpop0yV48zuz6GYa_ySfKxdAdDVCevfWQDDoPwcHgE7hshuj_Y-Y3xTKcdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2045268541</pqid></control><display><type>article</type><title>Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: Comparison of in vitro and in silico results</title><source>Elsevier ScienceDirect Journals</source><creator>Heeb, Norbert V. ; Mazenauer, Manuel ; Wyss, Simon ; Geueke, Birgit ; Kohler, Hans-Peter E. ; Lienemann, Peter</creator><creatorcontrib>Heeb, Norbert V. ; Mazenauer, Manuel ; Wyss, Simon ; Geueke, Birgit ; Kohler, Hans-Peter E. ; Lienemann, Peter</creatorcontrib><description>LinB is a haloalkane dehalogenase found in Sphingobium indicum B90A, an aerobic bacterium isolated from contaminated soils of hexachlorocyclohexane (HCH) dumpsites. We showed that this enzyme also converts hexabromocyclododecanes (HBCDs). Here we give new insights in the kinetics and stereochemistry of the enzymatic transformation of δ-HBCD, which resulted in the formation of two pentabromocyclododecanols (PBCDols) as first- (P1δ, P2δ) and two tetrabromocyclododecadiols (TBCDdiols) as second-generation products (T1δ, T2δ). Enzymatic transformations of δ-HBCD, α1-PBCDol, one of the transformation products, and α2-PBCDol, its enantiomer, were studied and modeled with Michaelis-Menten (MM) kinetics. Respective MM-parameters KM, vmax, kcat/KM indicated that δ-HBCD is the best LinB substrate followed by α2- and α1-PBCDol. The stereochemistry of these transformations was modeled in silico, investigating respective enzyme-substrate (ES) and enzyme-product (EP) complexes. One of the four predicted ES-complexes led to the PBCDol product P1δ, identical to α2-PBCDol with the 1R,2R,5S,6R,9R,10S-configuration. An SN2-like substitution of bromine at C6 of δ-HBCD by Asp-108 of LinB and subsequent hydrolysis of the alkyl-enzyme led to α2-PBCDol. Modeling results further indicate that backside attacks at C1, C9 and C10 are reasonable too, selectively binding leaving bromide ions in a halide pocket found in LinB. Docking with α2-PBCDol, also allowed productive enzyme binding. A TBCD-1,5-diol with the 1S,2S,5R,6R,9S,10R-configuration is the predicted second-generation product T1δ. In conclusion, in vitro- and in silico findings now allow a detailed description of step-wise enzymatic dehalohydroxylation reactions of δ-HBCD to specific PBCDols and TBCDdiols at Å-resolution and predictions of their stereochemistry. [Display omitted] •The dehalogenase LinB from Sphingobium Indicum converts δ-HBCD stereoselectively.•Two pentabromocyclododecanols and two tetrabromocyclododecadiols are formed.•Transformations of δ-HBCD, α1-and α2-PBCDol follow Michaelis-Menten kinetics.•Docking experiments revealed four enzyme-substrate complexes allowing SN2-type reactions.•One complex leads to the α2-PBCDol product with the 1R,2R,5S,6R,9R,10S-configuration.•Docking experiments predict 1S,2S,5R,6R,9S,10R-TBCD-1,5-diol as a second-generationproduct.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2018.05.057</identifier><identifier>PMID: 29793023</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>HBCD biotransformation ; HCH-Converting bacterial enzyme LinB ; Michaelis-menten kinetics ; Molecular docking ; Sphingomonadacea ; Structure prediction</subject><ispartof>Chemosphere (Oxford), 2018-09, Vol.207, p.118-129</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-608eaa0b28dc952c35e7d33ecb23723e7c5b0cfeb0441108bfc7f2672ae286053</citedby><cites>FETCH-LOGICAL-c377t-608eaa0b28dc952c35e7d33ecb23723e7c5b0cfeb0441108bfc7f2672ae286053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653518309056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29793023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heeb, Norbert V.</creatorcontrib><creatorcontrib>Mazenauer, Manuel</creatorcontrib><creatorcontrib>Wyss, Simon</creatorcontrib><creatorcontrib>Geueke, Birgit</creatorcontrib><creatorcontrib>Kohler, Hans-Peter E.</creatorcontrib><creatorcontrib>Lienemann, Peter</creatorcontrib><title>Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: Comparison of in vitro and in silico results</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>LinB is a haloalkane dehalogenase found in Sphingobium indicum B90A, an aerobic bacterium isolated from contaminated soils of hexachlorocyclohexane (HCH) dumpsites. We showed that this enzyme also converts hexabromocyclododecanes (HBCDs). Here we give new insights in the kinetics and stereochemistry of the enzymatic transformation of δ-HBCD, which resulted in the formation of two pentabromocyclododecanols (PBCDols) as first- (P1δ, P2δ) and two tetrabromocyclododecadiols (TBCDdiols) as second-generation products (T1δ, T2δ). Enzymatic transformations of δ-HBCD, α1-PBCDol, one of the transformation products, and α2-PBCDol, its enantiomer, were studied and modeled with Michaelis-Menten (MM) kinetics. Respective MM-parameters KM, vmax, kcat/KM indicated that δ-HBCD is the best LinB substrate followed by α2- and α1-PBCDol. The stereochemistry of these transformations was modeled in silico, investigating respective enzyme-substrate (ES) and enzyme-product (EP) complexes. One of the four predicted ES-complexes led to the PBCDol product P1δ, identical to α2-PBCDol with the 1R,2R,5S,6R,9R,10S-configuration. An SN2-like substitution of bromine at C6 of δ-HBCD by Asp-108 of LinB and subsequent hydrolysis of the alkyl-enzyme led to α2-PBCDol. Modeling results further indicate that backside attacks at C1, C9 and C10 are reasonable too, selectively binding leaving bromide ions in a halide pocket found in LinB. Docking with α2-PBCDol, also allowed productive enzyme binding. A TBCD-1,5-diol with the 1S,2S,5R,6R,9S,10R-configuration is the predicted second-generation product T1δ. In conclusion, in vitro- and in silico findings now allow a detailed description of step-wise enzymatic dehalohydroxylation reactions of δ-HBCD to specific PBCDols and TBCDdiols at Å-resolution and predictions of their stereochemistry. [Display omitted] •The dehalogenase LinB from Sphingobium Indicum converts δ-HBCD stereoselectively.•Two pentabromocyclododecanols and two tetrabromocyclododecadiols are formed.•Transformations of δ-HBCD, α1-and α2-PBCDol follow Michaelis-Menten kinetics.•Docking experiments revealed four enzyme-substrate complexes allowing SN2-type reactions.•One complex leads to the α2-PBCDol product with the 1R,2R,5S,6R,9R,10S-configuration.•Docking experiments predict 1S,2S,5R,6R,9S,10R-TBCD-1,5-diol as a second-generationproduct.</description><subject>HBCD biotransformation</subject><subject>HCH-Converting bacterial enzyme LinB</subject><subject>Michaelis-menten kinetics</subject><subject>Molecular docking</subject><subject>Sphingomonadacea</subject><subject>Structure prediction</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkEtuFDEQhi0EIkOSK0Rmx6YHP8btbnakeSRiJDawttzuasWjbntweSJNTpNDcAIOkDPhYRLEEumXavM_VB8hrzlbcsbrt5ulu4E54vYGEiwF482SqSL9jCx4o9uKi7Z5ThaMrVRVK6lOyCvEDWMlrNqX5ES0upVMyAXJX3yA7B1SGwaKuRTGQ7nHnPY0jnTtw2XlbLbT_g4G-vCzurrsPtCcbMAxptlmH8M72sV5a5PHGA4hH37d3_qc4p9WHyj6ybtIE-BuynhGXox2Qjh_vKfk-6eP37qrav3183X3fl05qXWuataAtawXzeBaJZxUoAcpwfVCaiFBO9UzN0LPVivOWdOPTo-i1sKCaGqm5Cl5c-zdpvhjB5hN-cvBNNkAcYdGFD6ibtSKF2t7tLoUEROMZpv8bNPecGYO0M3G_APdHKAbpop0yV48zuz6GYa_ySfKxdAdDVCevfWQDDoPwcHgE7hshuj_Y-Y3xTKcdg</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Heeb, Norbert V.</creator><creator>Mazenauer, Manuel</creator><creator>Wyss, Simon</creator><creator>Geueke, Birgit</creator><creator>Kohler, Hans-Peter E.</creator><creator>Lienemann, Peter</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201809</creationdate><title>Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: Comparison of in vitro and in silico results</title><author>Heeb, Norbert V. ; Mazenauer, Manuel ; Wyss, Simon ; Geueke, Birgit ; Kohler, Hans-Peter E. ; Lienemann, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-608eaa0b28dc952c35e7d33ecb23723e7c5b0cfeb0441108bfc7f2672ae286053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>HBCD biotransformation</topic><topic>HCH-Converting bacterial enzyme LinB</topic><topic>Michaelis-menten kinetics</topic><topic>Molecular docking</topic><topic>Sphingomonadacea</topic><topic>Structure prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heeb, Norbert V.</creatorcontrib><creatorcontrib>Mazenauer, Manuel</creatorcontrib><creatorcontrib>Wyss, Simon</creatorcontrib><creatorcontrib>Geueke, Birgit</creatorcontrib><creatorcontrib>Kohler, Hans-Peter E.</creatorcontrib><creatorcontrib>Lienemann, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heeb, Norbert V.</au><au>Mazenauer, Manuel</au><au>Wyss, Simon</au><au>Geueke, Birgit</au><au>Kohler, Hans-Peter E.</au><au>Lienemann, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: Comparison of in vitro and in silico results</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2018-09</date><risdate>2018</risdate><volume>207</volume><spage>118</spage><epage>129</epage><pages>118-129</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>LinB is a haloalkane dehalogenase found in Sphingobium indicum B90A, an aerobic bacterium isolated from contaminated soils of hexachlorocyclohexane (HCH) dumpsites. We showed that this enzyme also converts hexabromocyclododecanes (HBCDs). Here we give new insights in the kinetics and stereochemistry of the enzymatic transformation of δ-HBCD, which resulted in the formation of two pentabromocyclododecanols (PBCDols) as first- (P1δ, P2δ) and two tetrabromocyclododecadiols (TBCDdiols) as second-generation products (T1δ, T2δ). Enzymatic transformations of δ-HBCD, α1-PBCDol, one of the transformation products, and α2-PBCDol, its enantiomer, were studied and modeled with Michaelis-Menten (MM) kinetics. Respective MM-parameters KM, vmax, kcat/KM indicated that δ-HBCD is the best LinB substrate followed by α2- and α1-PBCDol. The stereochemistry of these transformations was modeled in silico, investigating respective enzyme-substrate (ES) and enzyme-product (EP) complexes. One of the four predicted ES-complexes led to the PBCDol product P1δ, identical to α2-PBCDol with the 1R,2R,5S,6R,9R,10S-configuration. An SN2-like substitution of bromine at C6 of δ-HBCD by Asp-108 of LinB and subsequent hydrolysis of the alkyl-enzyme led to α2-PBCDol. Modeling results further indicate that backside attacks at C1, C9 and C10 are reasonable too, selectively binding leaving bromide ions in a halide pocket found in LinB. Docking with α2-PBCDol, also allowed productive enzyme binding. A TBCD-1,5-diol with the 1S,2S,5R,6R,9S,10R-configuration is the predicted second-generation product T1δ. In conclusion, in vitro- and in silico findings now allow a detailed description of step-wise enzymatic dehalohydroxylation reactions of δ-HBCD to specific PBCDols and TBCDdiols at Å-resolution and predictions of their stereochemistry. [Display omitted] •The dehalogenase LinB from Sphingobium Indicum converts δ-HBCD stereoselectively.•Two pentabromocyclododecanols and two tetrabromocyclododecadiols are formed.•Transformations of δ-HBCD, α1-and α2-PBCDol follow Michaelis-Menten kinetics.•Docking experiments revealed four enzyme-substrate complexes allowing SN2-type reactions.•One complex leads to the α2-PBCDol product with the 1R,2R,5S,6R,9R,10S-configuration.•Docking experiments predict 1S,2S,5R,6R,9S,10R-TBCD-1,5-diol as a second-generationproduct.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29793023</pmid><doi>10.1016/j.chemosphere.2018.05.057</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2018-09, Vol.207, p.118-129
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_2045268541
source Elsevier ScienceDirect Journals
subjects HBCD biotransformation
HCH-Converting bacterial enzyme LinB
Michaelis-menten kinetics
Molecular docking
Sphingomonadacea
Structure prediction
title Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: Comparison of in vitro and in silico results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20and%20stereochemistry%20of%20LinB-catalyzed%20%CE%B4-HBCD%20transformation:%20Comparison%20of%20in%C2%A0vitro%20and%20in%20silico%20results&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Heeb,%20Norbert%20V.&rft.date=2018-09&rft.volume=207&rft.spage=118&rft.epage=129&rft.pages=118-129&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2018.05.057&rft_dat=%3Cproquest_cross%3E2045268541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2045268541&rft_id=info:pmid/29793023&rft_els_id=S0045653518309056&rfr_iscdi=true