A magnetohydrodynamic model applied to the lower convective region in the Sun
We have investigated the effects of a toroidal-type magnetic field of 10 T (105 G), in the lower convective region of a standard solar model. From the numerical solution of the magnetohydrodynamic (MHD) equations, distributions of some physical variables are obtained in spherical coordinates for thi...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2007-09, Vol.380 (1), p.142-148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 1 |
container_start_page | 142 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 380 |
creator | Cavus, H. Karafistan, A. I. |
description | We have investigated the effects of a toroidal-type magnetic field of 10 T (105 G), in the lower convective region of a standard solar model. From the numerical solution of the magnetohydrodynamic (MHD) equations, distributions of some physical variables are obtained in spherical coordinates for this layer. It is shown that the most important feature of this type of magnetic field is to break the spherical symmetric distribution of density and alter its compressibility with respect to latitude. This type of magnetic field does not change much the density of the reference model, and the resulting flux is also comparable to that found in other research. It is further shown that the MHD plasma acts as incompressible at the poles, in contrast to the perfect fluid behaviour at the equator. As a result we have estimated the limits and applicability of the anelastic and Boussinesq approximations for this layer. Thus our results might be useful, especially in simplifying the numerical integration schemes related to the lower convection zone in the Sun. |
doi_str_mv | 10.1111/j.1365-2966.2007.12012.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_20448568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2007.12012.x</oup_id><sourcerecordid>1323893641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4852-2db7482ef05c037797c5f5fbcccc76d09bad0209b17e295320fcf0c5d91dff283</originalsourceid><addsrcrecordid>eNp1kV9r2zAUxcXYYFm77yAG25u9K8my4pdBCdsySFtYu1H6IhT9aZXZlmvZbfLtKyelg43elys4v3OvuAchTCAnqT5vcsJKntGqLHMKIHJCgdB8-wrNnoXXaAbAeDYXhLxF72LcAEDBaDlDpye4UTetHcLtzvTB7FrVeI2bYGyNVdfV3ho8BDzcWlyHB9tjHdp7qwd_b3Fvb3xosW_38sXYHqM3TtXRvn_qR-jXt6-Xi2W2Ov_-Y3GyynQx5zSjZi2KObUOuAYmRCU0d9ytdSpRGqjWygBNjQhLK84oOO1Ac1MR4xydsyP06TC368PdaOMgGx-1rWvV2jBGSaFIi8oJ_PAPuAlj36a_JUawkhIOCfr4BKmoVe161WofZdf7RvU7SSogBRCRuC8H7sHXdvdXBzklITdyOricDi6nJOQ-CbmVp2c_9880gB0GhLF7wZ79Z0-u7ODycbDbZ5_q_8hSMMHl8upari7hqlr8Xspr9girGZxu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207362150</pqid></control><display><type>article</type><title>A magnetohydrodynamic model applied to the lower convective region in the Sun</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cavus, H. ; Karafistan, A. I.</creator><creatorcontrib>Cavus, H. ; Karafistan, A. I.</creatorcontrib><description>We have investigated the effects of a toroidal-type magnetic field of 10 T (105 G), in the lower convective region of a standard solar model. From the numerical solution of the magnetohydrodynamic (MHD) equations, distributions of some physical variables are obtained in spherical coordinates for this layer. It is shown that the most important feature of this type of magnetic field is to break the spherical symmetric distribution of density and alter its compressibility with respect to latitude. This type of magnetic field does not change much the density of the reference model, and the resulting flux is also comparable to that found in other research. It is further shown that the MHD plasma acts as incompressible at the poles, in contrast to the perfect fluid behaviour at the equator. As a result we have estimated the limits and applicability of the anelastic and Boussinesq approximations for this layer. Thus our results might be useful, especially in simplifying the numerical integration schemes related to the lower convection zone in the Sun.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2007.12012.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Approximation ; Astronomy ; Astrophysics ; Earth, ocean, space ; Estimating techniques ; Exact sciences and technology ; Magnetic fields ; MHD ; Sun ; Sun: fundamental parameters ; Sun: general ; Sun: interior ; Sun: magnetic fields</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2007-09, Vol.380 (1), p.142-148</ispartof><rights>2007 The Authors. Journal compilation © 2007 RAS 2007</rights><rights>2007 INIST-CNRS</rights><rights>2007 The Authors. Journal compilation © 2007 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4852-2db7482ef05c037797c5f5fbcccc76d09bad0209b17e295320fcf0c5d91dff283</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2007.12012.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2007.12012.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19014017$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavus, H.</creatorcontrib><creatorcontrib>Karafistan, A. I.</creatorcontrib><title>A magnetohydrodynamic model applied to the lower convective region in the Sun</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>We have investigated the effects of a toroidal-type magnetic field of 10 T (105 G), in the lower convective region of a standard solar model. From the numerical solution of the magnetohydrodynamic (MHD) equations, distributions of some physical variables are obtained in spherical coordinates for this layer. It is shown that the most important feature of this type of magnetic field is to break the spherical symmetric distribution of density and alter its compressibility with respect to latitude. This type of magnetic field does not change much the density of the reference model, and the resulting flux is also comparable to that found in other research. It is further shown that the MHD plasma acts as incompressible at the poles, in contrast to the perfect fluid behaviour at the equator. As a result we have estimated the limits and applicability of the anelastic and Boussinesq approximations for this layer. Thus our results might be useful, especially in simplifying the numerical integration schemes related to the lower convection zone in the Sun.</description><subject>Approximation</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Earth, ocean, space</subject><subject>Estimating techniques</subject><subject>Exact sciences and technology</subject><subject>Magnetic fields</subject><subject>MHD</subject><subject>Sun</subject><subject>Sun: fundamental parameters</subject><subject>Sun: general</subject><subject>Sun: interior</subject><subject>Sun: magnetic fields</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kV9r2zAUxcXYYFm77yAG25u9K8my4pdBCdsySFtYu1H6IhT9aZXZlmvZbfLtKyelg43elys4v3OvuAchTCAnqT5vcsJKntGqLHMKIHJCgdB8-wrNnoXXaAbAeDYXhLxF72LcAEDBaDlDpye4UTetHcLtzvTB7FrVeI2bYGyNVdfV3ho8BDzcWlyHB9tjHdp7qwd_b3Fvb3xosW_38sXYHqM3TtXRvn_qR-jXt6-Xi2W2Ov_-Y3GyynQx5zSjZi2KObUOuAYmRCU0d9ytdSpRGqjWygBNjQhLK84oOO1Ac1MR4xydsyP06TC368PdaOMgGx-1rWvV2jBGSaFIi8oJ_PAPuAlj36a_JUawkhIOCfr4BKmoVe161WofZdf7RvU7SSogBRCRuC8H7sHXdvdXBzklITdyOricDi6nJOQ-CbmVp2c_9880gB0GhLF7wZ79Z0-u7ODycbDbZ5_q_8hSMMHl8upari7hqlr8Xspr9girGZxu</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Cavus, H.</creator><creator>Karafistan, A. I.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>200709</creationdate><title>A magnetohydrodynamic model applied to the lower convective region in the Sun</title><author>Cavus, H. ; Karafistan, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4852-2db7482ef05c037797c5f5fbcccc76d09bad0209b17e295320fcf0c5d91dff283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Approximation</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Earth, ocean, space</topic><topic>Estimating techniques</topic><topic>Exact sciences and technology</topic><topic>Magnetic fields</topic><topic>MHD</topic><topic>Sun</topic><topic>Sun: fundamental parameters</topic><topic>Sun: general</topic><topic>Sun: interior</topic><topic>Sun: magnetic fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavus, H.</creatorcontrib><creatorcontrib>Karafistan, A. I.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavus, H.</au><au>Karafistan, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A magnetohydrodynamic model applied to the lower convective region in the Sun</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><date>2007-09</date><risdate>2007</risdate><volume>380</volume><issue>1</issue><spage>142</spage><epage>148</epage><pages>142-148</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>We have investigated the effects of a toroidal-type magnetic field of 10 T (105 G), in the lower convective region of a standard solar model. From the numerical solution of the magnetohydrodynamic (MHD) equations, distributions of some physical variables are obtained in spherical coordinates for this layer. It is shown that the most important feature of this type of magnetic field is to break the spherical symmetric distribution of density and alter its compressibility with respect to latitude. This type of magnetic field does not change much the density of the reference model, and the resulting flux is also comparable to that found in other research. It is further shown that the MHD plasma acts as incompressible at the poles, in contrast to the perfect fluid behaviour at the equator. As a result we have estimated the limits and applicability of the anelastic and Boussinesq approximations for this layer. Thus our results might be useful, especially in simplifying the numerical integration schemes related to the lower convection zone in the Sun.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2007.12012.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2007-09, Vol.380 (1), p.142-148 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_20448568 |
source | Oxford Journals Open Access Collection; Wiley Online Library Journals Frontfile Complete |
subjects | Approximation Astronomy Astrophysics Earth, ocean, space Estimating techniques Exact sciences and technology Magnetic fields MHD Sun Sun: fundamental parameters Sun: general Sun: interior Sun: magnetic fields |
title | A magnetohydrodynamic model applied to the lower convective region in the Sun |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20magnetohydrodynamic%20model%20applied%20to%20the%20lower%20convective%20region%20in%20the%20Sun&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Cavus,%20H.&rft.date=2007-09&rft.volume=380&rft.issue=1&rft.spage=142&rft.epage=148&rft.pages=142-148&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2007.12012.x&rft_dat=%3Cproquest_pasca%3E1323893641%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207362150&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2007.12012.x&rfr_iscdi=true |