A magnetohydrodynamic model applied to the lower convective region in the Sun

We have investigated the effects of a toroidal-type magnetic field of 10 T (105 G), in the lower convective region of a standard solar model. From the numerical solution of the magnetohydrodynamic (MHD) equations, distributions of some physical variables are obtained in spherical coordinates for thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2007-09, Vol.380 (1), p.142-148
Hauptverfasser: Cavus, H., Karafistan, A. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 1
container_start_page 142
container_title Monthly notices of the Royal Astronomical Society
container_volume 380
creator Cavus, H.
Karafistan, A. I.
description We have investigated the effects of a toroidal-type magnetic field of 10 T (105 G), in the lower convective region of a standard solar model. From the numerical solution of the magnetohydrodynamic (MHD) equations, distributions of some physical variables are obtained in spherical coordinates for this layer. It is shown that the most important feature of this type of magnetic field is to break the spherical symmetric distribution of density and alter its compressibility with respect to latitude. This type of magnetic field does not change much the density of the reference model, and the resulting flux is also comparable to that found in other research. It is further shown that the MHD plasma acts as incompressible at the poles, in contrast to the perfect fluid behaviour at the equator. As a result we have estimated the limits and applicability of the anelastic and Boussinesq approximations for this layer. Thus our results might be useful, especially in simplifying the numerical integration schemes related to the lower convection zone in the Sun.
doi_str_mv 10.1111/j.1365-2966.2007.12012.x
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_20448568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2007.12012.x</oup_id><sourcerecordid>1323893641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4852-2db7482ef05c037797c5f5fbcccc76d09bad0209b17e295320fcf0c5d91dff283</originalsourceid><addsrcrecordid>eNp1kV9r2zAUxcXYYFm77yAG25u9K8my4pdBCdsySFtYu1H6IhT9aZXZlmvZbfLtKyelg43elys4v3OvuAchTCAnqT5vcsJKntGqLHMKIHJCgdB8-wrNnoXXaAbAeDYXhLxF72LcAEDBaDlDpye4UTetHcLtzvTB7FrVeI2bYGyNVdfV3ho8BDzcWlyHB9tjHdp7qwd_b3Fvb3xosW_38sXYHqM3TtXRvn_qR-jXt6-Xi2W2Ov_-Y3GyynQx5zSjZi2KObUOuAYmRCU0d9ytdSpRGqjWygBNjQhLK84oOO1Ac1MR4xydsyP06TC368PdaOMgGx-1rWvV2jBGSaFIi8oJ_PAPuAlj36a_JUawkhIOCfr4BKmoVe161WofZdf7RvU7SSogBRCRuC8H7sHXdvdXBzklITdyOricDi6nJOQ-CbmVp2c_9880gB0GhLF7wZ79Z0-u7ODycbDbZ5_q_8hSMMHl8upari7hqlr8Xspr9girGZxu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207362150</pqid></control><display><type>article</type><title>A magnetohydrodynamic model applied to the lower convective region in the Sun</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cavus, H. ; Karafistan, A. I.</creator><creatorcontrib>Cavus, H. ; Karafistan, A. I.</creatorcontrib><description>We have investigated the effects of a toroidal-type magnetic field of 10 T (105 G), in the lower convective region of a standard solar model. From the numerical solution of the magnetohydrodynamic (MHD) equations, distributions of some physical variables are obtained in spherical coordinates for this layer. It is shown that the most important feature of this type of magnetic field is to break the spherical symmetric distribution of density and alter its compressibility with respect to latitude. This type of magnetic field does not change much the density of the reference model, and the resulting flux is also comparable to that found in other research. It is further shown that the MHD plasma acts as incompressible at the poles, in contrast to the perfect fluid behaviour at the equator. As a result we have estimated the limits and applicability of the anelastic and Boussinesq approximations for this layer. Thus our results might be useful, especially in simplifying the numerical integration schemes related to the lower convection zone in the Sun.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2007.12012.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Approximation ; Astronomy ; Astrophysics ; Earth, ocean, space ; Estimating techniques ; Exact sciences and technology ; Magnetic fields ; MHD ; Sun ; Sun: fundamental parameters ; Sun: general ; Sun: interior ; Sun: magnetic fields</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2007-09, Vol.380 (1), p.142-148</ispartof><rights>2007 The Authors. Journal compilation © 2007 RAS 2007</rights><rights>2007 INIST-CNRS</rights><rights>2007 The Authors. Journal compilation © 2007 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4852-2db7482ef05c037797c5f5fbcccc76d09bad0209b17e295320fcf0c5d91dff283</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2007.12012.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2007.12012.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19014017$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavus, H.</creatorcontrib><creatorcontrib>Karafistan, A. I.</creatorcontrib><title>A magnetohydrodynamic model applied to the lower convective region in the Sun</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>We have investigated the effects of a toroidal-type magnetic field of 10 T (105 G), in the lower convective region of a standard solar model. From the numerical solution of the magnetohydrodynamic (MHD) equations, distributions of some physical variables are obtained in spherical coordinates for this layer. It is shown that the most important feature of this type of magnetic field is to break the spherical symmetric distribution of density and alter its compressibility with respect to latitude. This type of magnetic field does not change much the density of the reference model, and the resulting flux is also comparable to that found in other research. It is further shown that the MHD plasma acts as incompressible at the poles, in contrast to the perfect fluid behaviour at the equator. As a result we have estimated the limits and applicability of the anelastic and Boussinesq approximations for this layer. Thus our results might be useful, especially in simplifying the numerical integration schemes related to the lower convection zone in the Sun.</description><subject>Approximation</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Earth, ocean, space</subject><subject>Estimating techniques</subject><subject>Exact sciences and technology</subject><subject>Magnetic fields</subject><subject>MHD</subject><subject>Sun</subject><subject>Sun: fundamental parameters</subject><subject>Sun: general</subject><subject>Sun: interior</subject><subject>Sun: magnetic fields</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kV9r2zAUxcXYYFm77yAG25u9K8my4pdBCdsySFtYu1H6IhT9aZXZlmvZbfLtKyelg43elys4v3OvuAchTCAnqT5vcsJKntGqLHMKIHJCgdB8-wrNnoXXaAbAeDYXhLxF72LcAEDBaDlDpye4UTetHcLtzvTB7FrVeI2bYGyNVdfV3ho8BDzcWlyHB9tjHdp7qwd_b3Fvb3xosW_38sXYHqM3TtXRvn_qR-jXt6-Xi2W2Ov_-Y3GyynQx5zSjZi2KObUOuAYmRCU0d9ytdSpRGqjWygBNjQhLK84oOO1Ac1MR4xydsyP06TC368PdaOMgGx-1rWvV2jBGSaFIi8oJ_PAPuAlj36a_JUawkhIOCfr4BKmoVe161WofZdf7RvU7SSogBRCRuC8H7sHXdvdXBzklITdyOricDi6nJOQ-CbmVp2c_9880gB0GhLF7wZ79Z0-u7ODycbDbZ5_q_8hSMMHl8upari7hqlr8Xspr9girGZxu</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Cavus, H.</creator><creator>Karafistan, A. I.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>200709</creationdate><title>A magnetohydrodynamic model applied to the lower convective region in the Sun</title><author>Cavus, H. ; Karafistan, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4852-2db7482ef05c037797c5f5fbcccc76d09bad0209b17e295320fcf0c5d91dff283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Approximation</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Earth, ocean, space</topic><topic>Estimating techniques</topic><topic>Exact sciences and technology</topic><topic>Magnetic fields</topic><topic>MHD</topic><topic>Sun</topic><topic>Sun: fundamental parameters</topic><topic>Sun: general</topic><topic>Sun: interior</topic><topic>Sun: magnetic fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavus, H.</creatorcontrib><creatorcontrib>Karafistan, A. I.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavus, H.</au><au>Karafistan, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A magnetohydrodynamic model applied to the lower convective region in the Sun</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><date>2007-09</date><risdate>2007</risdate><volume>380</volume><issue>1</issue><spage>142</spage><epage>148</epage><pages>142-148</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>We have investigated the effects of a toroidal-type magnetic field of 10 T (105 G), in the lower convective region of a standard solar model. From the numerical solution of the magnetohydrodynamic (MHD) equations, distributions of some physical variables are obtained in spherical coordinates for this layer. It is shown that the most important feature of this type of magnetic field is to break the spherical symmetric distribution of density and alter its compressibility with respect to latitude. This type of magnetic field does not change much the density of the reference model, and the resulting flux is also comparable to that found in other research. It is further shown that the MHD plasma acts as incompressible at the poles, in contrast to the perfect fluid behaviour at the equator. As a result we have estimated the limits and applicability of the anelastic and Boussinesq approximations for this layer. Thus our results might be useful, especially in simplifying the numerical integration schemes related to the lower convection zone in the Sun.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2007.12012.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2007-09, Vol.380 (1), p.142-148
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_20448568
source Oxford Journals Open Access Collection; Wiley Online Library Journals Frontfile Complete
subjects Approximation
Astronomy
Astrophysics
Earth, ocean, space
Estimating techniques
Exact sciences and technology
Magnetic fields
MHD
Sun
Sun: fundamental parameters
Sun: general
Sun: interior
Sun: magnetic fields
title A magnetohydrodynamic model applied to the lower convective region in the Sun
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20magnetohydrodynamic%20model%20applied%20to%20the%20lower%20convective%20region%20in%20the%20Sun&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Cavus,%20H.&rft.date=2007-09&rft.volume=380&rft.issue=1&rft.spage=142&rft.epage=148&rft.pages=142-148&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2007.12012.x&rft_dat=%3Cproquest_pasca%3E1323893641%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207362150&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2007.12012.x&rfr_iscdi=true