(‐)Epicatechin stimulates ERK‐dependent cyclic AMP response element activity and up‐regulates GluR2 in cortical neurons

Emerging evidence suggests that the cellular actions of flavonoids relate not simply to their antioxidant potential but also to the modulation of protein kinase signalling pathways. We investigated in primary cortical neurons, the ability of the flavan‐3‐ol, (‐)epicatechin, and its human metabolites...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2007-06, Vol.101 (6), p.1596-1606
Hauptverfasser: Schroeter, Hagen, Bahia, Parmvir, Spencer, Jeremy P. E., Sheppard, Olivia, Rattray, Marcus, Cadenas, Enrique, Rice‐Evans, Catherine, Williams, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1606
container_issue 6
container_start_page 1596
container_title Journal of neurochemistry
container_volume 101
creator Schroeter, Hagen
Bahia, Parmvir
Spencer, Jeremy P. E.
Sheppard, Olivia
Rattray, Marcus
Cadenas, Enrique
Rice‐Evans, Catherine
Williams, Robert J.
description Emerging evidence suggests that the cellular actions of flavonoids relate not simply to their antioxidant potential but also to the modulation of protein kinase signalling pathways. We investigated in primary cortical neurons, the ability of the flavan‐3‐ol, (‐)epicatechin, and its human metabolites at physiologically relevant concentrations, to stimulate phosphorylation of the transcription factor cAMP‐response element binding protein (CREB), a regulator of neuronal viability and synaptic plasticity. (‐)Epicatechin at 100–300 nmol/L stimulated a rapid, extracellular signal‐regulated kinase (ERK)‐ and PI3K‐dependent, increase in CREB phosphorylation. At micromolar concentrations, stimulation was no longer apparent and at the highest concentration tested (30 μmol/L) (‐)epicatechin was inhibitory. (‐)Epicatechin also stimulated ERK and Akt phosphorylation with similar bell‐shaped concentration‐response characteristics. The human metabolite 3′‐O‐methyl‐(‐)epicatechin was as effective as (‐)epicatechin at stimulating ERK phosphorylation, but (‐)epicatechin glucuronide was inactive. (‐)Epicatechin and 3′‐O‐methyl‐(‐)epicatechin treatments (100 nmol/L) increased CRE‐luciferase activity in cortical neurons in a partially ERK‐dependent manner, suggesting the potential to increase CREB‐mediated gene expression. mRNA levels of the glutamate receptor subunit GluR2 increased by 60%, measured 18 h after a 15 min exposure to (‐)epicatechin and this translated into an increase in GluR2 protein. Thus, (‐)epicatechin has the potential to increase CREB‐regulated gene expression and increase GluR2 levels and thus modulate neurotransmission, plasticity and synaptogenesis.
doi_str_mv 10.1111/j.1471-4159.2006.04434.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20432354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1282476621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5214-b6edd336d4d4419f26b6aad7b6df23a992fb0cab4f44efee840f22f0246b12bd3</originalsourceid><addsrcrecordid>eNqNkctu1DAYhS0EokPhFZCFRAWLBN_iSRYsqtHQAuWiCtaWY_8Gj3LDTkpngdRH4Bl5EhwmohIrvLGt853jXz4IYUpymtaLXU7FmmaCFlXOCJE5EYKL_PoOWv0V7qIVIYxlnAh2hB7EuCOESiHpfXRE16wqeVms0I9nv25-Pt8O3ugRzFff4Tj6dmrSLeLt5dukWhigs9CN2OxN4w0-ffcRB4hD30XA0EA7a9qM_sqPe6w7i6ch-QJ8WXLOmumS4ZRt-jCmlxrcwRSS_SG653QT4dGyH6PPr7afNufZxYez15vTi8wUjIqslmAt59IKKwStHJO11Nqua2kd47qqmKuJ0bVwQoADKAVxjDnChKwpqy0_RieH3CH03yaIo2p9NNA0uoN-iooRwRkvRAKf_APu-il0abbEyEKsK8ITVB4gE_oYAzg1BN_qsFeUqLkftVNzDWquQc39qD_9qOtkfbzkT3UL9ta4FJKApwugY_ooF3RnfLzlypLIileJe3ngvvsG9v89gHrzfjOf-G_mNq-B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206547903</pqid></control><display><type>article</type><title>(‐)Epicatechin stimulates ERK‐dependent cyclic AMP response element activity and up‐regulates GluR2 in cortical neurons</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Schroeter, Hagen ; Bahia, Parmvir ; Spencer, Jeremy P. E. ; Sheppard, Olivia ; Rattray, Marcus ; Cadenas, Enrique ; Rice‐Evans, Catherine ; Williams, Robert J.</creator><creatorcontrib>Schroeter, Hagen ; Bahia, Parmvir ; Spencer, Jeremy P. E. ; Sheppard, Olivia ; Rattray, Marcus ; Cadenas, Enrique ; Rice‐Evans, Catherine ; Williams, Robert J.</creatorcontrib><description>Emerging evidence suggests that the cellular actions of flavonoids relate not simply to their antioxidant potential but also to the modulation of protein kinase signalling pathways. We investigated in primary cortical neurons, the ability of the flavan‐3‐ol, (‐)epicatechin, and its human metabolites at physiologically relevant concentrations, to stimulate phosphorylation of the transcription factor cAMP‐response element binding protein (CREB), a regulator of neuronal viability and synaptic plasticity. (‐)Epicatechin at 100–300 nmol/L stimulated a rapid, extracellular signal‐regulated kinase (ERK)‐ and PI3K‐dependent, increase in CREB phosphorylation. At micromolar concentrations, stimulation was no longer apparent and at the highest concentration tested (30 μmol/L) (‐)epicatechin was inhibitory. (‐)Epicatechin also stimulated ERK and Akt phosphorylation with similar bell‐shaped concentration‐response characteristics. The human metabolite 3′‐O‐methyl‐(‐)epicatechin was as effective as (‐)epicatechin at stimulating ERK phosphorylation, but (‐)epicatechin glucuronide was inactive. (‐)Epicatechin and 3′‐O‐methyl‐(‐)epicatechin treatments (100 nmol/L) increased CRE‐luciferase activity in cortical neurons in a partially ERK‐dependent manner, suggesting the potential to increase CREB‐mediated gene expression. mRNA levels of the glutamate receptor subunit GluR2 increased by 60%, measured 18 h after a 15 min exposure to (‐)epicatechin and this translated into an increase in GluR2 protein. Thus, (‐)epicatechin has the potential to increase CREB‐regulated gene expression and increase GluR2 levels and thus modulate neurotransmission, plasticity and synaptogenesis.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2006.04434.x</identifier><identifier>PMID: 17298385</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adult and adolescent clinical studies ; Akt ; Animals ; antioxidants ; Biochemistry ; Biological and medical sciences ; Bipolar disorders ; Catechin - metabolism ; Catechin - pharmacology ; Cells, Cultured ; Cerebral Cortex - drug effects ; Cerebral Cortex - metabolism ; Cyclic AMP Response Element-Binding Protein - metabolism ; cyclic AMP‐response element binding protein ; Extracellular Signal-Regulated MAP Kinases - physiology ; flavonoids ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Kinases ; Medical sciences ; Mice ; mitogen‐activated protein kinase ; Molecular and cellular biology ; Molecular genetics ; Mood disorders ; neurodegeneration ; Neurology ; Neurons - drug effects ; Neurons - metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt - metabolism ; Psychology. Psychoanalysis. Psychiatry ; Psychopathology. Psychiatry ; Receptors, AMPA - biosynthesis ; Ribonucleic acid ; RNA ; RNA, Messenger - metabolism ; Signal transduction ; Transcription. Transcription factor. Splicing. Rna processing ; Up-Regulation</subject><ispartof>Journal of neurochemistry, 2007-06, Vol.101 (6), p.1596-1606</ispartof><rights>2007 INIST-CNRS</rights><rights>2007 The Authors Journal Compilation 2007 International Society for Neurochemistry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5214-b6edd336d4d4419f26b6aad7b6df23a992fb0cab4f44efee840f22f0246b12bd3</citedby><cites>FETCH-LOGICAL-c5214-b6edd336d4d4419f26b6aad7b6df23a992fb0cab4f44efee840f22f0246b12bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1471-4159.2006.04434.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1471-4159.2006.04434.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18806939$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17298385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schroeter, Hagen</creatorcontrib><creatorcontrib>Bahia, Parmvir</creatorcontrib><creatorcontrib>Spencer, Jeremy P. E.</creatorcontrib><creatorcontrib>Sheppard, Olivia</creatorcontrib><creatorcontrib>Rattray, Marcus</creatorcontrib><creatorcontrib>Cadenas, Enrique</creatorcontrib><creatorcontrib>Rice‐Evans, Catherine</creatorcontrib><creatorcontrib>Williams, Robert J.</creatorcontrib><title>(‐)Epicatechin stimulates ERK‐dependent cyclic AMP response element activity and up‐regulates GluR2 in cortical neurons</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Emerging evidence suggests that the cellular actions of flavonoids relate not simply to their antioxidant potential but also to the modulation of protein kinase signalling pathways. We investigated in primary cortical neurons, the ability of the flavan‐3‐ol, (‐)epicatechin, and its human metabolites at physiologically relevant concentrations, to stimulate phosphorylation of the transcription factor cAMP‐response element binding protein (CREB), a regulator of neuronal viability and synaptic plasticity. (‐)Epicatechin at 100–300 nmol/L stimulated a rapid, extracellular signal‐regulated kinase (ERK)‐ and PI3K‐dependent, increase in CREB phosphorylation. At micromolar concentrations, stimulation was no longer apparent and at the highest concentration tested (30 μmol/L) (‐)epicatechin was inhibitory. (‐)Epicatechin also stimulated ERK and Akt phosphorylation with similar bell‐shaped concentration‐response characteristics. The human metabolite 3′‐O‐methyl‐(‐)epicatechin was as effective as (‐)epicatechin at stimulating ERK phosphorylation, but (‐)epicatechin glucuronide was inactive. (‐)Epicatechin and 3′‐O‐methyl‐(‐)epicatechin treatments (100 nmol/L) increased CRE‐luciferase activity in cortical neurons in a partially ERK‐dependent manner, suggesting the potential to increase CREB‐mediated gene expression. mRNA levels of the glutamate receptor subunit GluR2 increased by 60%, measured 18 h after a 15 min exposure to (‐)epicatechin and this translated into an increase in GluR2 protein. Thus, (‐)epicatechin has the potential to increase CREB‐regulated gene expression and increase GluR2 levels and thus modulate neurotransmission, plasticity and synaptogenesis.</description><subject>Adult and adolescent clinical studies</subject><subject>Akt</subject><subject>Animals</subject><subject>antioxidants</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Bipolar disorders</subject><subject>Catechin - metabolism</subject><subject>Catechin - pharmacology</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - drug effects</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>cyclic AMP‐response element binding protein</subject><subject>Extracellular Signal-Regulated MAP Kinases - physiology</subject><subject>flavonoids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Kinases</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>mitogen‐activated protein kinase</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mood disorders</subject><subject>neurodegeneration</subject><subject>Neurology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Phosphorylation</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychopathology. Psychiatry</subject><subject>Receptors, AMPA - biosynthesis</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal transduction</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><subject>Up-Regulation</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAYhS0EokPhFZCFRAWLBN_iSRYsqtHQAuWiCtaWY_8Gj3LDTkpngdRH4Bl5EhwmohIrvLGt853jXz4IYUpymtaLXU7FmmaCFlXOCJE5EYKL_PoOWv0V7qIVIYxlnAh2hB7EuCOESiHpfXRE16wqeVms0I9nv25-Pt8O3ugRzFff4Tj6dmrSLeLt5dukWhigs9CN2OxN4w0-ffcRB4hD30XA0EA7a9qM_sqPe6w7i6ch-QJ8WXLOmumS4ZRt-jCmlxrcwRSS_SG653QT4dGyH6PPr7afNufZxYez15vTi8wUjIqslmAt59IKKwStHJO11Nqua2kd47qqmKuJ0bVwQoADKAVxjDnChKwpqy0_RieH3CH03yaIo2p9NNA0uoN-iooRwRkvRAKf_APu-il0abbEyEKsK8ITVB4gE_oYAzg1BN_qsFeUqLkftVNzDWquQc39qD_9qOtkfbzkT3UL9ta4FJKApwugY_ooF3RnfLzlypLIileJe3ngvvsG9v89gHrzfjOf-G_mNq-B</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Schroeter, Hagen</creator><creator>Bahia, Parmvir</creator><creator>Spencer, Jeremy P. E.</creator><creator>Sheppard, Olivia</creator><creator>Rattray, Marcus</creator><creator>Cadenas, Enrique</creator><creator>Rice‐Evans, Catherine</creator><creator>Williams, Robert J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>200706</creationdate><title>(‐)Epicatechin stimulates ERK‐dependent cyclic AMP response element activity and up‐regulates GluR2 in cortical neurons</title><author>Schroeter, Hagen ; Bahia, Parmvir ; Spencer, Jeremy P. E. ; Sheppard, Olivia ; Rattray, Marcus ; Cadenas, Enrique ; Rice‐Evans, Catherine ; Williams, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5214-b6edd336d4d4419f26b6aad7b6df23a992fb0cab4f44efee840f22f0246b12bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adult and adolescent clinical studies</topic><topic>Akt</topic><topic>Animals</topic><topic>antioxidants</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Bipolar disorders</topic><topic>Catechin - metabolism</topic><topic>Catechin - pharmacology</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - drug effects</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>cyclic AMP‐response element binding protein</topic><topic>Extracellular Signal-Regulated MAP Kinases - physiology</topic><topic>flavonoids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Kinases</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>mitogen‐activated protein kinase</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mood disorders</topic><topic>neurodegeneration</topic><topic>Neurology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Phosphorylation</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychopathology. Psychiatry</topic><topic>Receptors, AMPA - biosynthesis</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal transduction</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeter, Hagen</creatorcontrib><creatorcontrib>Bahia, Parmvir</creatorcontrib><creatorcontrib>Spencer, Jeremy P. E.</creatorcontrib><creatorcontrib>Sheppard, Olivia</creatorcontrib><creatorcontrib>Rattray, Marcus</creatorcontrib><creatorcontrib>Cadenas, Enrique</creatorcontrib><creatorcontrib>Rice‐Evans, Catherine</creatorcontrib><creatorcontrib>Williams, Robert J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeter, Hagen</au><au>Bahia, Parmvir</au><au>Spencer, Jeremy P. E.</au><au>Sheppard, Olivia</au><au>Rattray, Marcus</au><au>Cadenas, Enrique</au><au>Rice‐Evans, Catherine</au><au>Williams, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(‐)Epicatechin stimulates ERK‐dependent cyclic AMP response element activity and up‐regulates GluR2 in cortical neurons</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2007-06</date><risdate>2007</risdate><volume>101</volume><issue>6</issue><spage>1596</spage><epage>1606</epage><pages>1596-1606</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>Emerging evidence suggests that the cellular actions of flavonoids relate not simply to their antioxidant potential but also to the modulation of protein kinase signalling pathways. We investigated in primary cortical neurons, the ability of the flavan‐3‐ol, (‐)epicatechin, and its human metabolites at physiologically relevant concentrations, to stimulate phosphorylation of the transcription factor cAMP‐response element binding protein (CREB), a regulator of neuronal viability and synaptic plasticity. (‐)Epicatechin at 100–300 nmol/L stimulated a rapid, extracellular signal‐regulated kinase (ERK)‐ and PI3K‐dependent, increase in CREB phosphorylation. At micromolar concentrations, stimulation was no longer apparent and at the highest concentration tested (30 μmol/L) (‐)epicatechin was inhibitory. (‐)Epicatechin also stimulated ERK and Akt phosphorylation with similar bell‐shaped concentration‐response characteristics. The human metabolite 3′‐O‐methyl‐(‐)epicatechin was as effective as (‐)epicatechin at stimulating ERK phosphorylation, but (‐)epicatechin glucuronide was inactive. (‐)Epicatechin and 3′‐O‐methyl‐(‐)epicatechin treatments (100 nmol/L) increased CRE‐luciferase activity in cortical neurons in a partially ERK‐dependent manner, suggesting the potential to increase CREB‐mediated gene expression. mRNA levels of the glutamate receptor subunit GluR2 increased by 60%, measured 18 h after a 15 min exposure to (‐)epicatechin and this translated into an increase in GluR2 protein. Thus, (‐)epicatechin has the potential to increase CREB‐regulated gene expression and increase GluR2 levels and thus modulate neurotransmission, plasticity and synaptogenesis.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>17298385</pmid><doi>10.1111/j.1471-4159.2006.04434.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2007-06, Vol.101 (6), p.1596-1606
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_20432354
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Adult and adolescent clinical studies
Akt
Animals
antioxidants
Biochemistry
Biological and medical sciences
Bipolar disorders
Catechin - metabolism
Catechin - pharmacology
Cells, Cultured
Cerebral Cortex - drug effects
Cerebral Cortex - metabolism
Cyclic AMP Response Element-Binding Protein - metabolism
cyclic AMP‐response element binding protein
Extracellular Signal-Regulated MAP Kinases - physiology
flavonoids
Fundamental and applied biological sciences. Psychology
Gene expression
Kinases
Medical sciences
Mice
mitogen‐activated protein kinase
Molecular and cellular biology
Molecular genetics
Mood disorders
neurodegeneration
Neurology
Neurons - drug effects
Neurons - metabolism
Phosphorylation
Proto-Oncogene Proteins c-akt - metabolism
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Receptors, AMPA - biosynthesis
Ribonucleic acid
RNA
RNA, Messenger - metabolism
Signal transduction
Transcription. Transcription factor. Splicing. Rna processing
Up-Regulation
title (‐)Epicatechin stimulates ERK‐dependent cyclic AMP response element activity and up‐regulates GluR2 in cortical neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(%E2%80%90)Epicatechin%20stimulates%20ERK%E2%80%90dependent%20cyclic%20AMP%20response%20element%20activity%20and%20up%E2%80%90regulates%20GluR2%20in%20cortical%20neurons&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Schroeter,%20Hagen&rft.date=2007-06&rft.volume=101&rft.issue=6&rft.spage=1596&rft.epage=1606&rft.pages=1596-1606&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2006.04434.x&rft_dat=%3Cproquest_cross%3E1282476621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206547903&rft_id=info:pmid/17298385&rfr_iscdi=true