Caged cyclopropenes for controlling bioorthogonal reactivity
Bioorthogonal ligations have been designed and optimized to provide new experimental avenues for understanding biological systems. Generally, these optimizations have focused on improving reaction rates and orthogonality to both biology and other members of the bioorthogonal reaction repertoire. Les...
Gespeichert in:
Veröffentlicht in: | Organic & biomolecular chemistry 2018, Vol.16 (22), p.4081-4085 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4085 |
---|---|
container_issue | 22 |
container_start_page | 4081 |
container_title | Organic & biomolecular chemistry |
container_volume | 16 |
creator | Kumar, Pratik Jiang, Ting Li, Sining Zainul, Omar Laughlin, Scott T |
description | Bioorthogonal ligations have been designed and optimized to provide new experimental avenues for understanding biological systems. Generally, these optimizations have focused on improving reaction rates and orthogonality to both biology and other members of the bioorthogonal reaction repertoire. Less well explored are reactions that permit control of bioorthogonal reactivity in space and time. Here we describe a strategy that enables modular control of the cyclopropene-tetrazine ligation. We developed 3-N-substituted spirocyclopropenes that are designed to be unreactive towards 1,2,4,5-tetrazines when bulky N-protecting groups sterically prohibit the tetrazine's approach, and reactive once the groups are removed. We describe the synthesis of 3-N spirocyclopropenes with an appended electron withdrawing group to promote stability. Modification of the cyclopropene 3-N with a bulky, light-cleavable caging group was effective at stifling its reaction with tetrazine, and the caged cyclopropene was resistant to reaction with biological nucleophiles. As expected, upon removal of the light-labile group, the 3-N cyclopropene reacted with tetrazine to form the expected ligation product both in solution and on a tetrazine-modified protein. This reactivity caging strategy leverages the popular carbamate protecting group linkage, enabling the use of diverse caging groups to tailor the reaction's activation modality for specific applications. |
doi_str_mv | 10.1039/c8ob01076e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2043175906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2043175906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-c40d1f30133f7e65c2274ed664cd2296b273a6cba3cbb47e9b3049ab0f83cbbc3</originalsourceid><addsrcrecordid>eNpd0F1LwzAUBuAgipvTG3-AFLwRoXry0aQBb7TMDxjsRq9LkqazI2tm0gr793Zu7sKrczg8vBxehC4x3GGg8t7kXgMGwe0RGmMmRAoZlceHncAIncW4BMBScHaKRkQKCRlnY_RQqIWtErMxzq-DX9vWxqT2ITG-7YJ3rmkXiW68D92nX_hWuSRYZbrmu-k25-ikVi7ai_2coI_n6Xvxms7mL2_F4yw1NMddahhUuKaAKa2F5ZkhRDBbcc5MRYjkmgiquNGKGq2ZsFJTYFJpqPPtxdAJutnlDh9-9TZ25aqJxjqnWuv7WBJgFItMAh_o9T-69H0Y3t6qDDLJMsEGdbtTJvgYg63LdWhWKmxKDOW207LI50-_nU4HfLWP7PXKVgf6VyL9Ab-UcVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050594574</pqid></control><display><type>article</type><title>Caged cyclopropenes for controlling bioorthogonal reactivity</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kumar, Pratik ; Jiang, Ting ; Li, Sining ; Zainul, Omar ; Laughlin, Scott T</creator><creatorcontrib>Kumar, Pratik ; Jiang, Ting ; Li, Sining ; Zainul, Omar ; Laughlin, Scott T</creatorcontrib><description>Bioorthogonal ligations have been designed and optimized to provide new experimental avenues for understanding biological systems. Generally, these optimizations have focused on improving reaction rates and orthogonality to both biology and other members of the bioorthogonal reaction repertoire. Less well explored are reactions that permit control of bioorthogonal reactivity in space and time. Here we describe a strategy that enables modular control of the cyclopropene-tetrazine ligation. We developed 3-N-substituted spirocyclopropenes that are designed to be unreactive towards 1,2,4,5-tetrazines when bulky N-protecting groups sterically prohibit the tetrazine's approach, and reactive once the groups are removed. We describe the synthesis of 3-N spirocyclopropenes with an appended electron withdrawing group to promote stability. Modification of the cyclopropene 3-N with a bulky, light-cleavable caging group was effective at stifling its reaction with tetrazine, and the caged cyclopropene was resistant to reaction with biological nucleophiles. As expected, upon removal of the light-labile group, the 3-N cyclopropene reacted with tetrazine to form the expected ligation product both in solution and on a tetrazine-modified protein. This reactivity caging strategy leverages the popular carbamate protecting group linkage, enabling the use of diverse caging groups to tailor the reaction's activation modality for specific applications.</description><identifier>ISSN: 1477-0520</identifier><identifier>EISSN: 1477-0539</identifier><identifier>DOI: 10.1039/c8ob01076e</identifier><identifier>PMID: 29790564</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Carbamates - chemical synthesis ; Carbamates - chemistry ; Carbamates - radiation effects ; Cyclopropanes - chemical synthesis ; Cyclopropanes - chemistry ; Cyclopropanes - radiation effects ; Heterocyclic Compounds, 1-Ring - chemistry ; Kinetics ; Nucleophiles ; Organic compounds ; Orthogonality ; Protecting groups ; Proteins ; Reactivity ; Spiro Compounds - chemical synthesis ; Spiro Compounds - chemistry ; Spiro Compounds - radiation effects</subject><ispartof>Organic & biomolecular chemistry, 2018, Vol.16 (22), p.4081-4085</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-c40d1f30133f7e65c2274ed664cd2296b273a6cba3cbb47e9b3049ab0f83cbbc3</citedby><cites>FETCH-LOGICAL-c381t-c40d1f30133f7e65c2274ed664cd2296b273a6cba3cbb47e9b3049ab0f83cbbc3</cites><orcidid>0000-0002-9134-1200 ; 0000-0003-3884-1158 ; 0000-0002-9516-0212 ; 0000-0001-5349-3396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29790564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Pratik</creatorcontrib><creatorcontrib>Jiang, Ting</creatorcontrib><creatorcontrib>Li, Sining</creatorcontrib><creatorcontrib>Zainul, Omar</creatorcontrib><creatorcontrib>Laughlin, Scott T</creatorcontrib><title>Caged cyclopropenes for controlling bioorthogonal reactivity</title><title>Organic & biomolecular chemistry</title><addtitle>Org Biomol Chem</addtitle><description>Bioorthogonal ligations have been designed and optimized to provide new experimental avenues for understanding biological systems. Generally, these optimizations have focused on improving reaction rates and orthogonality to both biology and other members of the bioorthogonal reaction repertoire. Less well explored are reactions that permit control of bioorthogonal reactivity in space and time. Here we describe a strategy that enables modular control of the cyclopropene-tetrazine ligation. We developed 3-N-substituted spirocyclopropenes that are designed to be unreactive towards 1,2,4,5-tetrazines when bulky N-protecting groups sterically prohibit the tetrazine's approach, and reactive once the groups are removed. We describe the synthesis of 3-N spirocyclopropenes with an appended electron withdrawing group to promote stability. Modification of the cyclopropene 3-N with a bulky, light-cleavable caging group was effective at stifling its reaction with tetrazine, and the caged cyclopropene was resistant to reaction with biological nucleophiles. As expected, upon removal of the light-labile group, the 3-N cyclopropene reacted with tetrazine to form the expected ligation product both in solution and on a tetrazine-modified protein. This reactivity caging strategy leverages the popular carbamate protecting group linkage, enabling the use of diverse caging groups to tailor the reaction's activation modality for specific applications.</description><subject>Carbamates - chemical synthesis</subject><subject>Carbamates - chemistry</subject><subject>Carbamates - radiation effects</subject><subject>Cyclopropanes - chemical synthesis</subject><subject>Cyclopropanes - chemistry</subject><subject>Cyclopropanes - radiation effects</subject><subject>Heterocyclic Compounds, 1-Ring - chemistry</subject><subject>Kinetics</subject><subject>Nucleophiles</subject><subject>Organic compounds</subject><subject>Orthogonality</subject><subject>Protecting groups</subject><subject>Proteins</subject><subject>Reactivity</subject><subject>Spiro Compounds - chemical synthesis</subject><subject>Spiro Compounds - chemistry</subject><subject>Spiro Compounds - radiation effects</subject><issn>1477-0520</issn><issn>1477-0539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0F1LwzAUBuAgipvTG3-AFLwRoXry0aQBb7TMDxjsRq9LkqazI2tm0gr793Zu7sKrczg8vBxehC4x3GGg8t7kXgMGwe0RGmMmRAoZlceHncAIncW4BMBScHaKRkQKCRlnY_RQqIWtErMxzq-DX9vWxqT2ITG-7YJ3rmkXiW68D92nX_hWuSRYZbrmu-k25-ikVi7ai_2coI_n6Xvxms7mL2_F4yw1NMddahhUuKaAKa2F5ZkhRDBbcc5MRYjkmgiquNGKGq2ZsFJTYFJpqPPtxdAJutnlDh9-9TZ25aqJxjqnWuv7WBJgFItMAh_o9T-69H0Y3t6qDDLJMsEGdbtTJvgYg63LdWhWKmxKDOW207LI50-_nU4HfLWP7PXKVgf6VyL9Ab-UcVw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Kumar, Pratik</creator><creator>Jiang, Ting</creator><creator>Li, Sining</creator><creator>Zainul, Omar</creator><creator>Laughlin, Scott T</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9134-1200</orcidid><orcidid>https://orcid.org/0000-0003-3884-1158</orcidid><orcidid>https://orcid.org/0000-0002-9516-0212</orcidid><orcidid>https://orcid.org/0000-0001-5349-3396</orcidid></search><sort><creationdate>2018</creationdate><title>Caged cyclopropenes for controlling bioorthogonal reactivity</title><author>Kumar, Pratik ; Jiang, Ting ; Li, Sining ; Zainul, Omar ; Laughlin, Scott T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-c40d1f30133f7e65c2274ed664cd2296b273a6cba3cbb47e9b3049ab0f83cbbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbamates - chemical synthesis</topic><topic>Carbamates - chemistry</topic><topic>Carbamates - radiation effects</topic><topic>Cyclopropanes - chemical synthesis</topic><topic>Cyclopropanes - chemistry</topic><topic>Cyclopropanes - radiation effects</topic><topic>Heterocyclic Compounds, 1-Ring - chemistry</topic><topic>Kinetics</topic><topic>Nucleophiles</topic><topic>Organic compounds</topic><topic>Orthogonality</topic><topic>Protecting groups</topic><topic>Proteins</topic><topic>Reactivity</topic><topic>Spiro Compounds - chemical synthesis</topic><topic>Spiro Compounds - chemistry</topic><topic>Spiro Compounds - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Pratik</creatorcontrib><creatorcontrib>Jiang, Ting</creatorcontrib><creatorcontrib>Li, Sining</creatorcontrib><creatorcontrib>Zainul, Omar</creatorcontrib><creatorcontrib>Laughlin, Scott T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Organic & biomolecular chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Pratik</au><au>Jiang, Ting</au><au>Li, Sining</au><au>Zainul, Omar</au><au>Laughlin, Scott T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caged cyclopropenes for controlling bioorthogonal reactivity</atitle><jtitle>Organic & biomolecular chemistry</jtitle><addtitle>Org Biomol Chem</addtitle><date>2018</date><risdate>2018</risdate><volume>16</volume><issue>22</issue><spage>4081</spage><epage>4085</epage><pages>4081-4085</pages><issn>1477-0520</issn><eissn>1477-0539</eissn><abstract>Bioorthogonal ligations have been designed and optimized to provide new experimental avenues for understanding biological systems. Generally, these optimizations have focused on improving reaction rates and orthogonality to both biology and other members of the bioorthogonal reaction repertoire. Less well explored are reactions that permit control of bioorthogonal reactivity in space and time. Here we describe a strategy that enables modular control of the cyclopropene-tetrazine ligation. We developed 3-N-substituted spirocyclopropenes that are designed to be unreactive towards 1,2,4,5-tetrazines when bulky N-protecting groups sterically prohibit the tetrazine's approach, and reactive once the groups are removed. We describe the synthesis of 3-N spirocyclopropenes with an appended electron withdrawing group to promote stability. Modification of the cyclopropene 3-N with a bulky, light-cleavable caging group was effective at stifling its reaction with tetrazine, and the caged cyclopropene was resistant to reaction with biological nucleophiles. As expected, upon removal of the light-labile group, the 3-N cyclopropene reacted with tetrazine to form the expected ligation product both in solution and on a tetrazine-modified protein. This reactivity caging strategy leverages the popular carbamate protecting group linkage, enabling the use of diverse caging groups to tailor the reaction's activation modality for specific applications.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29790564</pmid><doi>10.1039/c8ob01076e</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9134-1200</orcidid><orcidid>https://orcid.org/0000-0003-3884-1158</orcidid><orcidid>https://orcid.org/0000-0002-9516-0212</orcidid><orcidid>https://orcid.org/0000-0001-5349-3396</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-0520 |
ispartof | Organic & biomolecular chemistry, 2018, Vol.16 (22), p.4081-4085 |
issn | 1477-0520 1477-0539 |
language | eng |
recordid | cdi_proquest_miscellaneous_2043175906 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Carbamates - chemical synthesis Carbamates - chemistry Carbamates - radiation effects Cyclopropanes - chemical synthesis Cyclopropanes - chemistry Cyclopropanes - radiation effects Heterocyclic Compounds, 1-Ring - chemistry Kinetics Nucleophiles Organic compounds Orthogonality Protecting groups Proteins Reactivity Spiro Compounds - chemical synthesis Spiro Compounds - chemistry Spiro Compounds - radiation effects |
title | Caged cyclopropenes for controlling bioorthogonal reactivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caged%20cyclopropenes%20for%20controlling%20bioorthogonal%20reactivity&rft.jtitle=Organic%20&%20biomolecular%20chemistry&rft.au=Kumar,%20Pratik&rft.date=2018&rft.volume=16&rft.issue=22&rft.spage=4081&rft.epage=4085&rft.pages=4081-4085&rft.issn=1477-0520&rft.eissn=1477-0539&rft_id=info:doi/10.1039/c8ob01076e&rft_dat=%3Cproquest_cross%3E2043175906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2050594574&rft_id=info:pmid/29790564&rfr_iscdi=true |