Caged cyclopropenes for controlling bioorthogonal reactivity

Bioorthogonal ligations have been designed and optimized to provide new experimental avenues for understanding biological systems. Generally, these optimizations have focused on improving reaction rates and orthogonality to both biology and other members of the bioorthogonal reaction repertoire. Les...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic & biomolecular chemistry 2018, Vol.16 (22), p.4081-4085
Hauptverfasser: Kumar, Pratik, Jiang, Ting, Li, Sining, Zainul, Omar, Laughlin, Scott T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4085
container_issue 22
container_start_page 4081
container_title Organic & biomolecular chemistry
container_volume 16
creator Kumar, Pratik
Jiang, Ting
Li, Sining
Zainul, Omar
Laughlin, Scott T
description Bioorthogonal ligations have been designed and optimized to provide new experimental avenues for understanding biological systems. Generally, these optimizations have focused on improving reaction rates and orthogonality to both biology and other members of the bioorthogonal reaction repertoire. Less well explored are reactions that permit control of bioorthogonal reactivity in space and time. Here we describe a strategy that enables modular control of the cyclopropene-tetrazine ligation. We developed 3-N-substituted spirocyclopropenes that are designed to be unreactive towards 1,2,4,5-tetrazines when bulky N-protecting groups sterically prohibit the tetrazine's approach, and reactive once the groups are removed. We describe the synthesis of 3-N spirocyclopropenes with an appended electron withdrawing group to promote stability. Modification of the cyclopropene 3-N with a bulky, light-cleavable caging group was effective at stifling its reaction with tetrazine, and the caged cyclopropene was resistant to reaction with biological nucleophiles. As expected, upon removal of the light-labile group, the 3-N cyclopropene reacted with tetrazine to form the expected ligation product both in solution and on a tetrazine-modified protein. This reactivity caging strategy leverages the popular carbamate protecting group linkage, enabling the use of diverse caging groups to tailor the reaction's activation modality for specific applications.
doi_str_mv 10.1039/c8ob01076e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2043175906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2043175906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-c40d1f30133f7e65c2274ed664cd2296b273a6cba3cbb47e9b3049ab0f83cbbc3</originalsourceid><addsrcrecordid>eNpd0F1LwzAUBuAgipvTG3-AFLwRoXry0aQBb7TMDxjsRq9LkqazI2tm0gr793Zu7sKrczg8vBxehC4x3GGg8t7kXgMGwe0RGmMmRAoZlceHncAIncW4BMBScHaKRkQKCRlnY_RQqIWtErMxzq-DX9vWxqT2ITG-7YJ3rmkXiW68D92nX_hWuSRYZbrmu-k25-ikVi7ai_2coI_n6Xvxms7mL2_F4yw1NMddahhUuKaAKa2F5ZkhRDBbcc5MRYjkmgiquNGKGq2ZsFJTYFJpqPPtxdAJutnlDh9-9TZ25aqJxjqnWuv7WBJgFItMAh_o9T-69H0Y3t6qDDLJMsEGdbtTJvgYg63LdWhWKmxKDOW207LI50-_nU4HfLWP7PXKVgf6VyL9Ab-UcVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050594574</pqid></control><display><type>article</type><title>Caged cyclopropenes for controlling bioorthogonal reactivity</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kumar, Pratik ; Jiang, Ting ; Li, Sining ; Zainul, Omar ; Laughlin, Scott T</creator><creatorcontrib>Kumar, Pratik ; Jiang, Ting ; Li, Sining ; Zainul, Omar ; Laughlin, Scott T</creatorcontrib><description>Bioorthogonal ligations have been designed and optimized to provide new experimental avenues for understanding biological systems. Generally, these optimizations have focused on improving reaction rates and orthogonality to both biology and other members of the bioorthogonal reaction repertoire. Less well explored are reactions that permit control of bioorthogonal reactivity in space and time. Here we describe a strategy that enables modular control of the cyclopropene-tetrazine ligation. We developed 3-N-substituted spirocyclopropenes that are designed to be unreactive towards 1,2,4,5-tetrazines when bulky N-protecting groups sterically prohibit the tetrazine's approach, and reactive once the groups are removed. We describe the synthesis of 3-N spirocyclopropenes with an appended electron withdrawing group to promote stability. Modification of the cyclopropene 3-N with a bulky, light-cleavable caging group was effective at stifling its reaction with tetrazine, and the caged cyclopropene was resistant to reaction with biological nucleophiles. As expected, upon removal of the light-labile group, the 3-N cyclopropene reacted with tetrazine to form the expected ligation product both in solution and on a tetrazine-modified protein. This reactivity caging strategy leverages the popular carbamate protecting group linkage, enabling the use of diverse caging groups to tailor the reaction's activation modality for specific applications.</description><identifier>ISSN: 1477-0520</identifier><identifier>EISSN: 1477-0539</identifier><identifier>DOI: 10.1039/c8ob01076e</identifier><identifier>PMID: 29790564</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Carbamates - chemical synthesis ; Carbamates - chemistry ; Carbamates - radiation effects ; Cyclopropanes - chemical synthesis ; Cyclopropanes - chemistry ; Cyclopropanes - radiation effects ; Heterocyclic Compounds, 1-Ring - chemistry ; Kinetics ; Nucleophiles ; Organic compounds ; Orthogonality ; Protecting groups ; Proteins ; Reactivity ; Spiro Compounds - chemical synthesis ; Spiro Compounds - chemistry ; Spiro Compounds - radiation effects</subject><ispartof>Organic &amp; biomolecular chemistry, 2018, Vol.16 (22), p.4081-4085</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-c40d1f30133f7e65c2274ed664cd2296b273a6cba3cbb47e9b3049ab0f83cbbc3</citedby><cites>FETCH-LOGICAL-c381t-c40d1f30133f7e65c2274ed664cd2296b273a6cba3cbb47e9b3049ab0f83cbbc3</cites><orcidid>0000-0002-9134-1200 ; 0000-0003-3884-1158 ; 0000-0002-9516-0212 ; 0000-0001-5349-3396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29790564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Pratik</creatorcontrib><creatorcontrib>Jiang, Ting</creatorcontrib><creatorcontrib>Li, Sining</creatorcontrib><creatorcontrib>Zainul, Omar</creatorcontrib><creatorcontrib>Laughlin, Scott T</creatorcontrib><title>Caged cyclopropenes for controlling bioorthogonal reactivity</title><title>Organic &amp; biomolecular chemistry</title><addtitle>Org Biomol Chem</addtitle><description>Bioorthogonal ligations have been designed and optimized to provide new experimental avenues for understanding biological systems. Generally, these optimizations have focused on improving reaction rates and orthogonality to both biology and other members of the bioorthogonal reaction repertoire. Less well explored are reactions that permit control of bioorthogonal reactivity in space and time. Here we describe a strategy that enables modular control of the cyclopropene-tetrazine ligation. We developed 3-N-substituted spirocyclopropenes that are designed to be unreactive towards 1,2,4,5-tetrazines when bulky N-protecting groups sterically prohibit the tetrazine's approach, and reactive once the groups are removed. We describe the synthesis of 3-N spirocyclopropenes with an appended electron withdrawing group to promote stability. Modification of the cyclopropene 3-N with a bulky, light-cleavable caging group was effective at stifling its reaction with tetrazine, and the caged cyclopropene was resistant to reaction with biological nucleophiles. As expected, upon removal of the light-labile group, the 3-N cyclopropene reacted with tetrazine to form the expected ligation product both in solution and on a tetrazine-modified protein. This reactivity caging strategy leverages the popular carbamate protecting group linkage, enabling the use of diverse caging groups to tailor the reaction's activation modality for specific applications.</description><subject>Carbamates - chemical synthesis</subject><subject>Carbamates - chemistry</subject><subject>Carbamates - radiation effects</subject><subject>Cyclopropanes - chemical synthesis</subject><subject>Cyclopropanes - chemistry</subject><subject>Cyclopropanes - radiation effects</subject><subject>Heterocyclic Compounds, 1-Ring - chemistry</subject><subject>Kinetics</subject><subject>Nucleophiles</subject><subject>Organic compounds</subject><subject>Orthogonality</subject><subject>Protecting groups</subject><subject>Proteins</subject><subject>Reactivity</subject><subject>Spiro Compounds - chemical synthesis</subject><subject>Spiro Compounds - chemistry</subject><subject>Spiro Compounds - radiation effects</subject><issn>1477-0520</issn><issn>1477-0539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0F1LwzAUBuAgipvTG3-AFLwRoXry0aQBb7TMDxjsRq9LkqazI2tm0gr793Zu7sKrczg8vBxehC4x3GGg8t7kXgMGwe0RGmMmRAoZlceHncAIncW4BMBScHaKRkQKCRlnY_RQqIWtErMxzq-DX9vWxqT2ITG-7YJ3rmkXiW68D92nX_hWuSRYZbrmu-k25-ikVi7ai_2coI_n6Xvxms7mL2_F4yw1NMddahhUuKaAKa2F5ZkhRDBbcc5MRYjkmgiquNGKGq2ZsFJTYFJpqPPtxdAJutnlDh9-9TZ25aqJxjqnWuv7WBJgFItMAh_o9T-69H0Y3t6qDDLJMsEGdbtTJvgYg63LdWhWKmxKDOW207LI50-_nU4HfLWP7PXKVgf6VyL9Ab-UcVw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Kumar, Pratik</creator><creator>Jiang, Ting</creator><creator>Li, Sining</creator><creator>Zainul, Omar</creator><creator>Laughlin, Scott T</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9134-1200</orcidid><orcidid>https://orcid.org/0000-0003-3884-1158</orcidid><orcidid>https://orcid.org/0000-0002-9516-0212</orcidid><orcidid>https://orcid.org/0000-0001-5349-3396</orcidid></search><sort><creationdate>2018</creationdate><title>Caged cyclopropenes for controlling bioorthogonal reactivity</title><author>Kumar, Pratik ; Jiang, Ting ; Li, Sining ; Zainul, Omar ; Laughlin, Scott T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-c40d1f30133f7e65c2274ed664cd2296b273a6cba3cbb47e9b3049ab0f83cbbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbamates - chemical synthesis</topic><topic>Carbamates - chemistry</topic><topic>Carbamates - radiation effects</topic><topic>Cyclopropanes - chemical synthesis</topic><topic>Cyclopropanes - chemistry</topic><topic>Cyclopropanes - radiation effects</topic><topic>Heterocyclic Compounds, 1-Ring - chemistry</topic><topic>Kinetics</topic><topic>Nucleophiles</topic><topic>Organic compounds</topic><topic>Orthogonality</topic><topic>Protecting groups</topic><topic>Proteins</topic><topic>Reactivity</topic><topic>Spiro Compounds - chemical synthesis</topic><topic>Spiro Compounds - chemistry</topic><topic>Spiro Compounds - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Pratik</creatorcontrib><creatorcontrib>Jiang, Ting</creatorcontrib><creatorcontrib>Li, Sining</creatorcontrib><creatorcontrib>Zainul, Omar</creatorcontrib><creatorcontrib>Laughlin, Scott T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Organic &amp; biomolecular chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Pratik</au><au>Jiang, Ting</au><au>Li, Sining</au><au>Zainul, Omar</au><au>Laughlin, Scott T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caged cyclopropenes for controlling bioorthogonal reactivity</atitle><jtitle>Organic &amp; biomolecular chemistry</jtitle><addtitle>Org Biomol Chem</addtitle><date>2018</date><risdate>2018</risdate><volume>16</volume><issue>22</issue><spage>4081</spage><epage>4085</epage><pages>4081-4085</pages><issn>1477-0520</issn><eissn>1477-0539</eissn><abstract>Bioorthogonal ligations have been designed and optimized to provide new experimental avenues for understanding biological systems. Generally, these optimizations have focused on improving reaction rates and orthogonality to both biology and other members of the bioorthogonal reaction repertoire. Less well explored are reactions that permit control of bioorthogonal reactivity in space and time. Here we describe a strategy that enables modular control of the cyclopropene-tetrazine ligation. We developed 3-N-substituted spirocyclopropenes that are designed to be unreactive towards 1,2,4,5-tetrazines when bulky N-protecting groups sterically prohibit the tetrazine's approach, and reactive once the groups are removed. We describe the synthesis of 3-N spirocyclopropenes with an appended electron withdrawing group to promote stability. Modification of the cyclopropene 3-N with a bulky, light-cleavable caging group was effective at stifling its reaction with tetrazine, and the caged cyclopropene was resistant to reaction with biological nucleophiles. As expected, upon removal of the light-labile group, the 3-N cyclopropene reacted with tetrazine to form the expected ligation product both in solution and on a tetrazine-modified protein. This reactivity caging strategy leverages the popular carbamate protecting group linkage, enabling the use of diverse caging groups to tailor the reaction's activation modality for specific applications.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29790564</pmid><doi>10.1039/c8ob01076e</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9134-1200</orcidid><orcidid>https://orcid.org/0000-0003-3884-1158</orcidid><orcidid>https://orcid.org/0000-0002-9516-0212</orcidid><orcidid>https://orcid.org/0000-0001-5349-3396</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1477-0520
ispartof Organic & biomolecular chemistry, 2018, Vol.16 (22), p.4081-4085
issn 1477-0520
1477-0539
language eng
recordid cdi_proquest_miscellaneous_2043175906
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Carbamates - chemical synthesis
Carbamates - chemistry
Carbamates - radiation effects
Cyclopropanes - chemical synthesis
Cyclopropanes - chemistry
Cyclopropanes - radiation effects
Heterocyclic Compounds, 1-Ring - chemistry
Kinetics
Nucleophiles
Organic compounds
Orthogonality
Protecting groups
Proteins
Reactivity
Spiro Compounds - chemical synthesis
Spiro Compounds - chemistry
Spiro Compounds - radiation effects
title Caged cyclopropenes for controlling bioorthogonal reactivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caged%20cyclopropenes%20for%20controlling%20bioorthogonal%20reactivity&rft.jtitle=Organic%20&%20biomolecular%20chemistry&rft.au=Kumar,%20Pratik&rft.date=2018&rft.volume=16&rft.issue=22&rft.spage=4081&rft.epage=4085&rft.pages=4081-4085&rft.issn=1477-0520&rft.eissn=1477-0539&rft_id=info:doi/10.1039/c8ob01076e&rft_dat=%3Cproquest_cross%3E2043175906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2050594574&rft_id=info:pmid/29790564&rfr_iscdi=true