Flow Cytometry-Based Epitope Binning Using Competitive Binding Profiles for the Characterization of Monoclonal Antibodies against Cellular and Soluble Protein Targets

A key step in the therapeutic antibody drug discovery process is early identification of diverse candidate molecules. Information comparing antibody binding epitopes can be used to classify antibodies within a large panel, guiding rational lead molecule selection. We describe a novel epitope binning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SLAS discovery 2018-08, Vol.23 (7), p.613-623
Hauptverfasser: Chan, Brian M., Badh, Anita, Berry, Kelly A., Grauer, Stephanie A., King, Chadwick T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 623
container_issue 7
container_start_page 613
container_title SLAS discovery
container_volume 23
creator Chan, Brian M.
Badh, Anita
Berry, Kelly A.
Grauer, Stephanie A.
King, Chadwick T.
description A key step in the therapeutic antibody drug discovery process is early identification of diverse candidate molecules. Information comparing antibody binding epitopes can be used to classify antibodies within a large panel, guiding rational lead molecule selection. We describe a novel epitope binning method utilizing high-throughput flow cytometry (HTFC) that leverages cellular barcoding or spectrally distinct beads to multiplex samples to characterize antibodies raised against cell membrane receptor or soluble protein targets. With no requirement for sample purification or direct labeling, the method is suited for early characterization of antibody candidates. This method generates competitive binding profiles of each antibody against a defined set of known or unknown reference antibodies for binding to epitopes of an antigen. Antibodies with closely related competitive binding profiles indicate similar epitopes and are classified in the same bin. These large, high-throughput, multiplexed experiments can yield epitope bins or clusters for the entire antibody panel, from which a conceptual map of the epitope space for each antibody can be created. Combining this valuable epitope information with other data, such as functional activity, sequence, and selectivity of binding to orthologs and paralogs, enables us to advance the best epitope-diverse candidates for further development.
doi_str_mv 10.1177/2472555218774334
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2042756880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_2472555218774334</sage_id><sourcerecordid>2042756880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-fb38e4562e1b421ef9da8f532975cdebfd1ae6a6f5593ca7f92e6aeaa731aed03</originalsourceid><addsrcrecordid>eNp1UcFO3TAQtKqigoB7T5WPvaR17DjOO0IEbSWqIgHnaBOvH0aOndoO1esH8Z0kfZRDpcrS2rs7M_LuEPK-ZJ_KUqnPvFJcSsnLRqlKiOoNOVpLhZQ1e_v6lvyQnKb0wBgrVS2W844c8o1qRFPLI_J06cIv2u5yGDHHXXEOCTW9mGwOE9Jz6731W3qX1tiGccJss33809Fr7ToGYx0makKk-R5pew8RhozR_oZsg6fB0O_Bh8EFD46e-Wz7oO3CgC1YnzJt0bnZQaTgNb0Jbu4drroZrae3ELeY0wk5MOASnr7cx-Tu8uK2_Vpc_fjyrT27KoaqkrkwvWiwkjXHsq94iWajoTFSLPPKQWNvdAlYQ22k3IgBlNnwJUUAJZaGZuKYfNzrTjH8nDHlbrRpWD4IHsOcOs4qrmTdNCuU7aFDDClFNN0U7Qhx15WsWw3q_jVooXx4UZ_7EfUr4a8dC6DYAxJssXsIc1x2lv4v-Aye1ZxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042756880</pqid></control><display><type>article</type><title>Flow Cytometry-Based Epitope Binning Using Competitive Binding Profiles for the Characterization of Monoclonal Antibodies against Cellular and Soluble Protein Targets</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chan, Brian M. ; Badh, Anita ; Berry, Kelly A. ; Grauer, Stephanie A. ; King, Chadwick T.</creator><creatorcontrib>Chan, Brian M. ; Badh, Anita ; Berry, Kelly A. ; Grauer, Stephanie A. ; King, Chadwick T.</creatorcontrib><description>A key step in the therapeutic antibody drug discovery process is early identification of diverse candidate molecules. Information comparing antibody binding epitopes can be used to classify antibodies within a large panel, guiding rational lead molecule selection. We describe a novel epitope binning method utilizing high-throughput flow cytometry (HTFC) that leverages cellular barcoding or spectrally distinct beads to multiplex samples to characterize antibodies raised against cell membrane receptor or soluble protein targets. With no requirement for sample purification or direct labeling, the method is suited for early characterization of antibody candidates. This method generates competitive binding profiles of each antibody against a defined set of known or unknown reference antibodies for binding to epitopes of an antigen. Antibodies with closely related competitive binding profiles indicate similar epitopes and are classified in the same bin. These large, high-throughput, multiplexed experiments can yield epitope bins or clusters for the entire antibody panel, from which a conceptual map of the epitope space for each antibody can be created. Combining this valuable epitope information with other data, such as functional activity, sequence, and selectivity of binding to orthologs and paralogs, enables us to advance the best epitope-diverse candidates for further development.</description><identifier>ISSN: 2472-5552</identifier><identifier>EISSN: 2472-5560</identifier><identifier>DOI: 10.1177/2472555218774334</identifier><identifier>PMID: 29783865</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>SLAS discovery, 2018-08, Vol.23 (7), p.613-623</ispartof><rights>2018 Society for Laboratory Automation and Screening</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-fb38e4562e1b421ef9da8f532975cdebfd1ae6a6f5593ca7f92e6aeaa731aed03</citedby><cites>FETCH-LOGICAL-c445t-fb38e4562e1b421ef9da8f532975cdebfd1ae6a6f5593ca7f92e6aeaa731aed03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29783865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, Brian M.</creatorcontrib><creatorcontrib>Badh, Anita</creatorcontrib><creatorcontrib>Berry, Kelly A.</creatorcontrib><creatorcontrib>Grauer, Stephanie A.</creatorcontrib><creatorcontrib>King, Chadwick T.</creatorcontrib><title>Flow Cytometry-Based Epitope Binning Using Competitive Binding Profiles for the Characterization of Monoclonal Antibodies against Cellular and Soluble Protein Targets</title><title>SLAS discovery</title><addtitle>J Biomol Screen</addtitle><description>A key step in the therapeutic antibody drug discovery process is early identification of diverse candidate molecules. Information comparing antibody binding epitopes can be used to classify antibodies within a large panel, guiding rational lead molecule selection. We describe a novel epitope binning method utilizing high-throughput flow cytometry (HTFC) that leverages cellular barcoding or spectrally distinct beads to multiplex samples to characterize antibodies raised against cell membrane receptor or soluble protein targets. With no requirement for sample purification or direct labeling, the method is suited for early characterization of antibody candidates. This method generates competitive binding profiles of each antibody against a defined set of known or unknown reference antibodies for binding to epitopes of an antigen. Antibodies with closely related competitive binding profiles indicate similar epitopes and are classified in the same bin. These large, high-throughput, multiplexed experiments can yield epitope bins or clusters for the entire antibody panel, from which a conceptual map of the epitope space for each antibody can be created. Combining this valuable epitope information with other data, such as functional activity, sequence, and selectivity of binding to orthologs and paralogs, enables us to advance the best epitope-diverse candidates for further development.</description><issn>2472-5552</issn><issn>2472-5560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UcFO3TAQtKqigoB7T5WPvaR17DjOO0IEbSWqIgHnaBOvH0aOndoO1esH8Z0kfZRDpcrS2rs7M_LuEPK-ZJ_KUqnPvFJcSsnLRqlKiOoNOVpLhZQ1e_v6lvyQnKb0wBgrVS2W844c8o1qRFPLI_J06cIv2u5yGDHHXXEOCTW9mGwOE9Jz6731W3qX1tiGccJss33809Fr7ToGYx0makKk-R5pew8RhozR_oZsg6fB0O_Bh8EFD46e-Wz7oO3CgC1YnzJt0bnZQaTgNb0Jbu4drroZrae3ELeY0wk5MOASnr7cx-Tu8uK2_Vpc_fjyrT27KoaqkrkwvWiwkjXHsq94iWajoTFSLPPKQWNvdAlYQ22k3IgBlNnwJUUAJZaGZuKYfNzrTjH8nDHlbrRpWD4IHsOcOs4qrmTdNCuU7aFDDClFNN0U7Qhx15WsWw3q_jVooXx4UZ_7EfUr4a8dC6DYAxJssXsIc1x2lv4v-Aye1ZxQ</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Chan, Brian M.</creator><creator>Badh, Anita</creator><creator>Berry, Kelly A.</creator><creator>Grauer, Stephanie A.</creator><creator>King, Chadwick T.</creator><general>SAGE Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201808</creationdate><title>Flow Cytometry-Based Epitope Binning Using Competitive Binding Profiles for the Characterization of Monoclonal Antibodies against Cellular and Soluble Protein Targets</title><author>Chan, Brian M. ; Badh, Anita ; Berry, Kelly A. ; Grauer, Stephanie A. ; King, Chadwick T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-fb38e4562e1b421ef9da8f532975cdebfd1ae6a6f5593ca7f92e6aeaa731aed03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Brian M.</creatorcontrib><creatorcontrib>Badh, Anita</creatorcontrib><creatorcontrib>Berry, Kelly A.</creatorcontrib><creatorcontrib>Grauer, Stephanie A.</creatorcontrib><creatorcontrib>King, Chadwick T.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>SLAS discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Brian M.</au><au>Badh, Anita</au><au>Berry, Kelly A.</au><au>Grauer, Stephanie A.</au><au>King, Chadwick T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow Cytometry-Based Epitope Binning Using Competitive Binding Profiles for the Characterization of Monoclonal Antibodies against Cellular and Soluble Protein Targets</atitle><jtitle>SLAS discovery</jtitle><addtitle>J Biomol Screen</addtitle><date>2018-08</date><risdate>2018</risdate><volume>23</volume><issue>7</issue><spage>613</spage><epage>623</epage><pages>613-623</pages><issn>2472-5552</issn><eissn>2472-5560</eissn><abstract>A key step in the therapeutic antibody drug discovery process is early identification of diverse candidate molecules. Information comparing antibody binding epitopes can be used to classify antibodies within a large panel, guiding rational lead molecule selection. We describe a novel epitope binning method utilizing high-throughput flow cytometry (HTFC) that leverages cellular barcoding or spectrally distinct beads to multiplex samples to characterize antibodies raised against cell membrane receptor or soluble protein targets. With no requirement for sample purification or direct labeling, the method is suited for early characterization of antibody candidates. This method generates competitive binding profiles of each antibody against a defined set of known or unknown reference antibodies for binding to epitopes of an antigen. Antibodies with closely related competitive binding profiles indicate similar epitopes and are classified in the same bin. These large, high-throughput, multiplexed experiments can yield epitope bins or clusters for the entire antibody panel, from which a conceptual map of the epitope space for each antibody can be created. Combining this valuable epitope information with other data, such as functional activity, sequence, and selectivity of binding to orthologs and paralogs, enables us to advance the best epitope-diverse candidates for further development.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>29783865</pmid><doi>10.1177/2472555218774334</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2472-5552
ispartof SLAS discovery, 2018-08, Vol.23 (7), p.613-623
issn 2472-5552
2472-5560
language eng
recordid cdi_proquest_miscellaneous_2042756880
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Flow Cytometry-Based Epitope Binning Using Competitive Binding Profiles for the Characterization of Monoclonal Antibodies against Cellular and Soluble Protein Targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20Cytometry-Based%20Epitope%20Binning%20Using%20Competitive%20Binding%20Profiles%20for%20the%20Characterization%20of%20Monoclonal%20Antibodies%20against%20Cellular%20and%20Soluble%20Protein%20Targets&rft.jtitle=SLAS%20discovery&rft.au=Chan,%20Brian%20M.&rft.date=2018-08&rft.volume=23&rft.issue=7&rft.spage=613&rft.epage=623&rft.pages=613-623&rft.issn=2472-5552&rft.eissn=2472-5560&rft_id=info:doi/10.1177/2472555218774334&rft_dat=%3Cproquest_cross%3E2042756880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042756880&rft_id=info:pmid/29783865&rft_sage_id=10.1177_2472555218774334&rfr_iscdi=true