Zinc Oxide-Enhanced Piezoelectret Polypropylene Microfiber for Mechanical Energy Harvesting

This paper reports zinc oxide (ZnO)-coated piezoelectret polypropylene (PP) microfibers with a structure of two opposite arc-shaped braces for enhanced mechanical energy harvesting. The ZnO film was coated onto PP microfibers via magnetron sputtering to form a ZnO/PP compound structure. Triboelectri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-06, Vol.10 (23), p.19940-19947
Hauptverfasser: Zhu, Jianxiong, Zhu, Yali, Song, Weixing, Wang, Hui, Gao, Min, Cho, Minkyu, Park, Inkyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19947
container_issue 23
container_start_page 19940
container_title ACS applied materials & interfaces
container_volume 10
creator Zhu, Jianxiong
Zhu, Yali
Song, Weixing
Wang, Hui
Gao, Min
Cho, Minkyu
Park, Inkyu
description This paper reports zinc oxide (ZnO)-coated piezoelectret polypropylene (PP) microfibers with a structure of two opposite arc-shaped braces for enhanced mechanical energy harvesting. The ZnO film was coated onto PP microfibers via magnetron sputtering to form a ZnO/PP compound structure. Triboelectric Nanogenerator (TENG) based on ZnO/PP microfiber compound film was carefully designed with two opposite arc-shaped braces. The results of this study demonstrated that the mechanical energy collection efficiency of TENG based on piezoelectret PP microfiber was greatly enhanced by the coated ZnO and high-voltage corona charging method. We found that, with the step-increased distance of traveling for the movable carbon black electrode, an electrical power with an approximately quadratic function of distance was generated by this mechanical–electrical energy conversion, because more PP microfibers were connected to the electrode. Further, with a full contact condition, the peak of the generated voltage, current, and charges based on the ZnO/PP microfibers by this mechanical–electrical energy conversion with 1 m/s2 reached 120 V, 3 μA, and 49 nC, respectively. Moreover, a finger-tapping test was used to demonstrate that the ZnO/PP microfiber TENG is capable of lighting eight light-emitting diodes.
doi_str_mv 10.1021/acsami.8b02458
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2042752162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042752162</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-1494a52be951ed86bb66e85353b13e019ca1fca94e9b6a1f1cdacfbdeca8f0ad3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EoqWwMqKMCCnFdhw3HlFVKFJRO8ACg2U7l-IqTYqdIMKvxyilG9Pd8L139x5ClwSPCabkVhmvtnacaUxZmh2hIRGMxRlN6fFhZ2yAzrzfYMwTitNTNKBiknFG-BC9vdrKRMsvm0M8q95VZSCPVha-ayjBNA6aaFWX3c7Vu66ECqIna1xdWA0uKmoXPYEJImtUGc0qcOsumiv3Cb6x1focnRSq9HCxnyP0cj97ns7jxfLhcXq3iFUieBMTJphKqQaREsgzrjXnkKVJmmiSACbCKFIYJRgIzcNKTK5MoXMwKiuwypMRuu59w5cfbbgtt9YbKEtVQd16STGjk5QSTgM67tEQwnsHhdw5u1WukwTL30JlX6jcFxoEV3vvVm8hP-B_DQbgpgeCUG7q1lUh6n9uP45Egqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042752162</pqid></control><display><type>article</type><title>Zinc Oxide-Enhanced Piezoelectret Polypropylene Microfiber for Mechanical Energy Harvesting</title><source>ACS Publications</source><creator>Zhu, Jianxiong ; Zhu, Yali ; Song, Weixing ; Wang, Hui ; Gao, Min ; Cho, Minkyu ; Park, Inkyu</creator><creatorcontrib>Zhu, Jianxiong ; Zhu, Yali ; Song, Weixing ; Wang, Hui ; Gao, Min ; Cho, Minkyu ; Park, Inkyu</creatorcontrib><description>This paper reports zinc oxide (ZnO)-coated piezoelectret polypropylene (PP) microfibers with a structure of two opposite arc-shaped braces for enhanced mechanical energy harvesting. The ZnO film was coated onto PP microfibers via magnetron sputtering to form a ZnO/PP compound structure. Triboelectric Nanogenerator (TENG) based on ZnO/PP microfiber compound film was carefully designed with two opposite arc-shaped braces. The results of this study demonstrated that the mechanical energy collection efficiency of TENG based on piezoelectret PP microfiber was greatly enhanced by the coated ZnO and high-voltage corona charging method. We found that, with the step-increased distance of traveling for the movable carbon black electrode, an electrical power with an approximately quadratic function of distance was generated by this mechanical–electrical energy conversion, because more PP microfibers were connected to the electrode. Further, with a full contact condition, the peak of the generated voltage, current, and charges based on the ZnO/PP microfibers by this mechanical–electrical energy conversion with 1 m/s2 reached 120 V, 3 μA, and 49 nC, respectively. Moreover, a finger-tapping test was used to demonstrate that the ZnO/PP microfiber TENG is capable of lighting eight light-emitting diodes.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b02458</identifier><identifier>PMID: 29786416</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-06, Vol.10 (23), p.19940-19947</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-1494a52be951ed86bb66e85353b13e019ca1fca94e9b6a1f1cdacfbdeca8f0ad3</citedby><cites>FETCH-LOGICAL-a396t-1494a52be951ed86bb66e85353b13e019ca1fca94e9b6a1f1cdacfbdeca8f0ad3</cites><orcidid>0000-0002-0006-2063 ; 0000-0001-5761-7739 ; 0000-0002-7880-053X ; 0000-0002-9172-5255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b02458$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b02458$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29786416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jianxiong</creatorcontrib><creatorcontrib>Zhu, Yali</creatorcontrib><creatorcontrib>Song, Weixing</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Gao, Min</creatorcontrib><creatorcontrib>Cho, Minkyu</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><title>Zinc Oxide-Enhanced Piezoelectret Polypropylene Microfiber for Mechanical Energy Harvesting</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>This paper reports zinc oxide (ZnO)-coated piezoelectret polypropylene (PP) microfibers with a structure of two opposite arc-shaped braces for enhanced mechanical energy harvesting. The ZnO film was coated onto PP microfibers via magnetron sputtering to form a ZnO/PP compound structure. Triboelectric Nanogenerator (TENG) based on ZnO/PP microfiber compound film was carefully designed with two opposite arc-shaped braces. The results of this study demonstrated that the mechanical energy collection efficiency of TENG based on piezoelectret PP microfiber was greatly enhanced by the coated ZnO and high-voltage corona charging method. We found that, with the step-increased distance of traveling for the movable carbon black electrode, an electrical power with an approximately quadratic function of distance was generated by this mechanical–electrical energy conversion, because more PP microfibers were connected to the electrode. Further, with a full contact condition, the peak of the generated voltage, current, and charges based on the ZnO/PP microfibers by this mechanical–electrical energy conversion with 1 m/s2 reached 120 V, 3 μA, and 49 nC, respectively. Moreover, a finger-tapping test was used to demonstrate that the ZnO/PP microfiber TENG is capable of lighting eight light-emitting diodes.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EoqWwMqKMCCnFdhw3HlFVKFJRO8ACg2U7l-IqTYqdIMKvxyilG9Pd8L139x5ClwSPCabkVhmvtnacaUxZmh2hIRGMxRlN6fFhZ2yAzrzfYMwTitNTNKBiknFG-BC9vdrKRMsvm0M8q95VZSCPVha-ayjBNA6aaFWX3c7Vu66ECqIna1xdWA0uKmoXPYEJImtUGc0qcOsumiv3Cb6x1focnRSq9HCxnyP0cj97ns7jxfLhcXq3iFUieBMTJphKqQaREsgzrjXnkKVJmmiSACbCKFIYJRgIzcNKTK5MoXMwKiuwypMRuu59w5cfbbgtt9YbKEtVQd16STGjk5QSTgM67tEQwnsHhdw5u1WukwTL30JlX6jcFxoEV3vvVm8hP-B_DQbgpgeCUG7q1lUh6n9uP45Egqs</recordid><startdate>20180613</startdate><enddate>20180613</enddate><creator>Zhu, Jianxiong</creator><creator>Zhu, Yali</creator><creator>Song, Weixing</creator><creator>Wang, Hui</creator><creator>Gao, Min</creator><creator>Cho, Minkyu</creator><creator>Park, Inkyu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0006-2063</orcidid><orcidid>https://orcid.org/0000-0001-5761-7739</orcidid><orcidid>https://orcid.org/0000-0002-7880-053X</orcidid><orcidid>https://orcid.org/0000-0002-9172-5255</orcidid></search><sort><creationdate>20180613</creationdate><title>Zinc Oxide-Enhanced Piezoelectret Polypropylene Microfiber for Mechanical Energy Harvesting</title><author>Zhu, Jianxiong ; Zhu, Yali ; Song, Weixing ; Wang, Hui ; Gao, Min ; Cho, Minkyu ; Park, Inkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-1494a52be951ed86bb66e85353b13e019ca1fca94e9b6a1f1cdacfbdeca8f0ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jianxiong</creatorcontrib><creatorcontrib>Zhu, Yali</creatorcontrib><creatorcontrib>Song, Weixing</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Gao, Min</creatorcontrib><creatorcontrib>Cho, Minkyu</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jianxiong</au><au>Zhu, Yali</au><au>Song, Weixing</au><au>Wang, Hui</au><au>Gao, Min</au><au>Cho, Minkyu</au><au>Park, Inkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc Oxide-Enhanced Piezoelectret Polypropylene Microfiber for Mechanical Energy Harvesting</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-06-13</date><risdate>2018</risdate><volume>10</volume><issue>23</issue><spage>19940</spage><epage>19947</epage><pages>19940-19947</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>This paper reports zinc oxide (ZnO)-coated piezoelectret polypropylene (PP) microfibers with a structure of two opposite arc-shaped braces for enhanced mechanical energy harvesting. The ZnO film was coated onto PP microfibers via magnetron sputtering to form a ZnO/PP compound structure. Triboelectric Nanogenerator (TENG) based on ZnO/PP microfiber compound film was carefully designed with two opposite arc-shaped braces. The results of this study demonstrated that the mechanical energy collection efficiency of TENG based on piezoelectret PP microfiber was greatly enhanced by the coated ZnO and high-voltage corona charging method. We found that, with the step-increased distance of traveling for the movable carbon black electrode, an electrical power with an approximately quadratic function of distance was generated by this mechanical–electrical energy conversion, because more PP microfibers were connected to the electrode. Further, with a full contact condition, the peak of the generated voltage, current, and charges based on the ZnO/PP microfibers by this mechanical–electrical energy conversion with 1 m/s2 reached 120 V, 3 μA, and 49 nC, respectively. Moreover, a finger-tapping test was used to demonstrate that the ZnO/PP microfiber TENG is capable of lighting eight light-emitting diodes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29786416</pmid><doi>10.1021/acsami.8b02458</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0006-2063</orcidid><orcidid>https://orcid.org/0000-0001-5761-7739</orcidid><orcidid>https://orcid.org/0000-0002-7880-053X</orcidid><orcidid>https://orcid.org/0000-0002-9172-5255</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-06, Vol.10 (23), p.19940-19947
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2042752162
source ACS Publications
title Zinc Oxide-Enhanced Piezoelectret Polypropylene Microfiber for Mechanical Energy Harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc%20Oxide-Enhanced%20Piezoelectret%20Polypropylene%20Microfiber%20for%20Mechanical%20Energy%20Harvesting&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhu,%20Jianxiong&rft.date=2018-06-13&rft.volume=10&rft.issue=23&rft.spage=19940&rft.epage=19947&rft.pages=19940-19947&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b02458&rft_dat=%3Cproquest_cross%3E2042752162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042752162&rft_id=info:pmid/29786416&rfr_iscdi=true