Zinc Oxide-Enhanced Piezoelectret Polypropylene Microfiber for Mechanical Energy Harvesting
This paper reports zinc oxide (ZnO)-coated piezoelectret polypropylene (PP) microfibers with a structure of two opposite arc-shaped braces for enhanced mechanical energy harvesting. The ZnO film was coated onto PP microfibers via magnetron sputtering to form a ZnO/PP compound structure. Triboelectri...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-06, Vol.10 (23), p.19940-19947 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19947 |
---|---|
container_issue | 23 |
container_start_page | 19940 |
container_title | ACS applied materials & interfaces |
container_volume | 10 |
creator | Zhu, Jianxiong Zhu, Yali Song, Weixing Wang, Hui Gao, Min Cho, Minkyu Park, Inkyu |
description | This paper reports zinc oxide (ZnO)-coated piezoelectret polypropylene (PP) microfibers with a structure of two opposite arc-shaped braces for enhanced mechanical energy harvesting. The ZnO film was coated onto PP microfibers via magnetron sputtering to form a ZnO/PP compound structure. Triboelectric Nanogenerator (TENG) based on ZnO/PP microfiber compound film was carefully designed with two opposite arc-shaped braces. The results of this study demonstrated that the mechanical energy collection efficiency of TENG based on piezoelectret PP microfiber was greatly enhanced by the coated ZnO and high-voltage corona charging method. We found that, with the step-increased distance of traveling for the movable carbon black electrode, an electrical power with an approximately quadratic function of distance was generated by this mechanical–electrical energy conversion, because more PP microfibers were connected to the electrode. Further, with a full contact condition, the peak of the generated voltage, current, and charges based on the ZnO/PP microfibers by this mechanical–electrical energy conversion with 1 m/s2 reached 120 V, 3 μA, and 49 nC, respectively. Moreover, a finger-tapping test was used to demonstrate that the ZnO/PP microfiber TENG is capable of lighting eight light-emitting diodes. |
doi_str_mv | 10.1021/acsami.8b02458 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2042752162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042752162</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-1494a52be951ed86bb66e85353b13e019ca1fca94e9b6a1f1cdacfbdeca8f0ad3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EoqWwMqKMCCnFdhw3HlFVKFJRO8ACg2U7l-IqTYqdIMKvxyilG9Pd8L139x5ClwSPCabkVhmvtnacaUxZmh2hIRGMxRlN6fFhZ2yAzrzfYMwTitNTNKBiknFG-BC9vdrKRMsvm0M8q95VZSCPVha-ayjBNA6aaFWX3c7Vu66ECqIna1xdWA0uKmoXPYEJImtUGc0qcOsumiv3Cb6x1focnRSq9HCxnyP0cj97ns7jxfLhcXq3iFUieBMTJphKqQaREsgzrjXnkKVJmmiSACbCKFIYJRgIzcNKTK5MoXMwKiuwypMRuu59w5cfbbgtt9YbKEtVQd16STGjk5QSTgM67tEQwnsHhdw5u1WukwTL30JlX6jcFxoEV3vvVm8hP-B_DQbgpgeCUG7q1lUh6n9uP45Egqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042752162</pqid></control><display><type>article</type><title>Zinc Oxide-Enhanced Piezoelectret Polypropylene Microfiber for Mechanical Energy Harvesting</title><source>ACS Publications</source><creator>Zhu, Jianxiong ; Zhu, Yali ; Song, Weixing ; Wang, Hui ; Gao, Min ; Cho, Minkyu ; Park, Inkyu</creator><creatorcontrib>Zhu, Jianxiong ; Zhu, Yali ; Song, Weixing ; Wang, Hui ; Gao, Min ; Cho, Minkyu ; Park, Inkyu</creatorcontrib><description>This paper reports zinc oxide (ZnO)-coated piezoelectret polypropylene (PP) microfibers with a structure of two opposite arc-shaped braces for enhanced mechanical energy harvesting. The ZnO film was coated onto PP microfibers via magnetron sputtering to form a ZnO/PP compound structure. Triboelectric Nanogenerator (TENG) based on ZnO/PP microfiber compound film was carefully designed with two opposite arc-shaped braces. The results of this study demonstrated that the mechanical energy collection efficiency of TENG based on piezoelectret PP microfiber was greatly enhanced by the coated ZnO and high-voltage corona charging method. We found that, with the step-increased distance of traveling for the movable carbon black electrode, an electrical power with an approximately quadratic function of distance was generated by this mechanical–electrical energy conversion, because more PP microfibers were connected to the electrode. Further, with a full contact condition, the peak of the generated voltage, current, and charges based on the ZnO/PP microfibers by this mechanical–electrical energy conversion with 1 m/s2 reached 120 V, 3 μA, and 49 nC, respectively. Moreover, a finger-tapping test was used to demonstrate that the ZnO/PP microfiber TENG is capable of lighting eight light-emitting diodes.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b02458</identifier><identifier>PMID: 29786416</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2018-06, Vol.10 (23), p.19940-19947</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-1494a52be951ed86bb66e85353b13e019ca1fca94e9b6a1f1cdacfbdeca8f0ad3</citedby><cites>FETCH-LOGICAL-a396t-1494a52be951ed86bb66e85353b13e019ca1fca94e9b6a1f1cdacfbdeca8f0ad3</cites><orcidid>0000-0002-0006-2063 ; 0000-0001-5761-7739 ; 0000-0002-7880-053X ; 0000-0002-9172-5255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b02458$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b02458$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29786416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jianxiong</creatorcontrib><creatorcontrib>Zhu, Yali</creatorcontrib><creatorcontrib>Song, Weixing</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Gao, Min</creatorcontrib><creatorcontrib>Cho, Minkyu</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><title>Zinc Oxide-Enhanced Piezoelectret Polypropylene Microfiber for Mechanical Energy Harvesting</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>This paper reports zinc oxide (ZnO)-coated piezoelectret polypropylene (PP) microfibers with a structure of two opposite arc-shaped braces for enhanced mechanical energy harvesting. The ZnO film was coated onto PP microfibers via magnetron sputtering to form a ZnO/PP compound structure. Triboelectric Nanogenerator (TENG) based on ZnO/PP microfiber compound film was carefully designed with two opposite arc-shaped braces. The results of this study demonstrated that the mechanical energy collection efficiency of TENG based on piezoelectret PP microfiber was greatly enhanced by the coated ZnO and high-voltage corona charging method. We found that, with the step-increased distance of traveling for the movable carbon black electrode, an electrical power with an approximately quadratic function of distance was generated by this mechanical–electrical energy conversion, because more PP microfibers were connected to the electrode. Further, with a full contact condition, the peak of the generated voltage, current, and charges based on the ZnO/PP microfibers by this mechanical–electrical energy conversion with 1 m/s2 reached 120 V, 3 μA, and 49 nC, respectively. Moreover, a finger-tapping test was used to demonstrate that the ZnO/PP microfiber TENG is capable of lighting eight light-emitting diodes.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EoqWwMqKMCCnFdhw3HlFVKFJRO8ACg2U7l-IqTYqdIMKvxyilG9Pd8L139x5ClwSPCabkVhmvtnacaUxZmh2hIRGMxRlN6fFhZ2yAzrzfYMwTitNTNKBiknFG-BC9vdrKRMsvm0M8q95VZSCPVha-ayjBNA6aaFWX3c7Vu66ECqIna1xdWA0uKmoXPYEJImtUGc0qcOsumiv3Cb6x1focnRSq9HCxnyP0cj97ns7jxfLhcXq3iFUieBMTJphKqQaREsgzrjXnkKVJmmiSACbCKFIYJRgIzcNKTK5MoXMwKiuwypMRuu59w5cfbbgtt9YbKEtVQd16STGjk5QSTgM67tEQwnsHhdw5u1WukwTL30JlX6jcFxoEV3vvVm8hP-B_DQbgpgeCUG7q1lUh6n9uP45Egqs</recordid><startdate>20180613</startdate><enddate>20180613</enddate><creator>Zhu, Jianxiong</creator><creator>Zhu, Yali</creator><creator>Song, Weixing</creator><creator>Wang, Hui</creator><creator>Gao, Min</creator><creator>Cho, Minkyu</creator><creator>Park, Inkyu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0006-2063</orcidid><orcidid>https://orcid.org/0000-0001-5761-7739</orcidid><orcidid>https://orcid.org/0000-0002-7880-053X</orcidid><orcidid>https://orcid.org/0000-0002-9172-5255</orcidid></search><sort><creationdate>20180613</creationdate><title>Zinc Oxide-Enhanced Piezoelectret Polypropylene Microfiber for Mechanical Energy Harvesting</title><author>Zhu, Jianxiong ; Zhu, Yali ; Song, Weixing ; Wang, Hui ; Gao, Min ; Cho, Minkyu ; Park, Inkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-1494a52be951ed86bb66e85353b13e019ca1fca94e9b6a1f1cdacfbdeca8f0ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jianxiong</creatorcontrib><creatorcontrib>Zhu, Yali</creatorcontrib><creatorcontrib>Song, Weixing</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Gao, Min</creatorcontrib><creatorcontrib>Cho, Minkyu</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jianxiong</au><au>Zhu, Yali</au><au>Song, Weixing</au><au>Wang, Hui</au><au>Gao, Min</au><au>Cho, Minkyu</au><au>Park, Inkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc Oxide-Enhanced Piezoelectret Polypropylene Microfiber for Mechanical Energy Harvesting</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-06-13</date><risdate>2018</risdate><volume>10</volume><issue>23</issue><spage>19940</spage><epage>19947</epage><pages>19940-19947</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>This paper reports zinc oxide (ZnO)-coated piezoelectret polypropylene (PP) microfibers with a structure of two opposite arc-shaped braces for enhanced mechanical energy harvesting. The ZnO film was coated onto PP microfibers via magnetron sputtering to form a ZnO/PP compound structure. Triboelectric Nanogenerator (TENG) based on ZnO/PP microfiber compound film was carefully designed with two opposite arc-shaped braces. The results of this study demonstrated that the mechanical energy collection efficiency of TENG based on piezoelectret PP microfiber was greatly enhanced by the coated ZnO and high-voltage corona charging method. We found that, with the step-increased distance of traveling for the movable carbon black electrode, an electrical power with an approximately quadratic function of distance was generated by this mechanical–electrical energy conversion, because more PP microfibers were connected to the electrode. Further, with a full contact condition, the peak of the generated voltage, current, and charges based on the ZnO/PP microfibers by this mechanical–electrical energy conversion with 1 m/s2 reached 120 V, 3 μA, and 49 nC, respectively. Moreover, a finger-tapping test was used to demonstrate that the ZnO/PP microfiber TENG is capable of lighting eight light-emitting diodes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29786416</pmid><doi>10.1021/acsami.8b02458</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0006-2063</orcidid><orcidid>https://orcid.org/0000-0001-5761-7739</orcidid><orcidid>https://orcid.org/0000-0002-7880-053X</orcidid><orcidid>https://orcid.org/0000-0002-9172-5255</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2018-06, Vol.10 (23), p.19940-19947 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2042752162 |
source | ACS Publications |
title | Zinc Oxide-Enhanced Piezoelectret Polypropylene Microfiber for Mechanical Energy Harvesting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc%20Oxide-Enhanced%20Piezoelectret%20Polypropylene%20Microfiber%20for%20Mechanical%20Energy%20Harvesting&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhu,%20Jianxiong&rft.date=2018-06-13&rft.volume=10&rft.issue=23&rft.spage=19940&rft.epage=19947&rft.pages=19940-19947&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b02458&rft_dat=%3Cproquest_cross%3E2042752162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042752162&rft_id=info:pmid/29786416&rfr_iscdi=true |