Unique Energy Alignments of a Ternary Material System toward High‐Performance Organic Photovoltaics
Incorporating narrow‐bandgap near‐infrared absorbers as the third component in a donor/acceptor binary blend is a new strategy to improve the power conversion efficiency (PCE) of organic photovoltaics (OPV). However, there are two main restrictions: potential charge recombination in the narrow‐gap m...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2018-07, Vol.30 (28), p.e1801501-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 28 |
container_start_page | e1801501 |
container_title | Advanced materials (Weinheim) |
container_volume | 30 |
creator | Cheng, Pei Wang, Jiayu Zhang, Qianqian Huang, Wenchao Zhu, Jingshuai Wang, Rui Chang, Sheng‐Yung Sun, Pengyu Meng, Lei Zhao, Hongxiang Cheng, Hao‐Wen Huang, Tianyi Liu, Yuqiang Wang, Chaochen Zhu, Chenhui You, Wei Zhan, Xiaowei Yang, Yang |
description | Incorporating narrow‐bandgap near‐infrared absorbers as the third component in a donor/acceptor binary blend is a new strategy to improve the power conversion efficiency (PCE) of organic photovoltaics (OPV). However, there are two main restrictions: potential charge recombination in the narrow‐gap material and miscompatibility between each component. The optimized design is to employ a third component (structurally similar to the donor or acceptor) with a lowest unoccupied molecular orbital (LUMO) energy level similar to the acceptor and a highest occupied molecular orbital (HOMO) energy level similar to the donor. In this design, enhanced absorption of the active layer and enhanced charge transfer can be realized without breaking the optimized morphology of the active layer. Herein, in order to realize this design, two new narrow‐bandgap nonfullerene acceptors with suitable energy levels and chemical structures are designed, synthesized, and employed as the third component in the donor/acceptor binary blend, which boosts the PCE of OPV to 11.6%.
By employing new third components with fine design of chemical structures and energy levels, the absorption of the active layer can be broadened and charge transfer can be enhanced without a break of the optimized morphology of the active layer, leading to high‐performance ternary blend nonfullerene organic photovoltaics. |
doi_str_mv | 10.1002/adma.201801501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2042750739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076933753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4131-d155ccabd975c249bb38e2d39a319951eea0cf72d65c4edd1bfbb42c2dc1aeef3</originalsourceid><addsrcrecordid>eNqFkbtOwzAUhi0EgnJZGZElFpYUX-IkHituRWpFJdo5cuyT1iiJwU5B3XgEnpEnIVULSCxMZ_nOJ_3_j9ApJX1KCLtUplZ9RmhGqCB0B_WoYDSKiRS7qEckF5FM4uwAHYbwRAiRCUn20QGTacaSTPQQzBr7sgR804Cfr_CgsvOmhqYN2JVY4Sn4RvkVHqsWvFUVflyFFmrcujflDR7a-eLz_WMCvnS-Vo0G_ODnqrEaTxauda-uapXV4RjtlaoKcLK9R2h2ezO9Gkajh7v7q8Eo0jHlNDJUCK1VYWQqNItlUfAMmOFScSqloACK6DJlJhE6BmNoURZFzDQzmiqAkh-hi4332bsuVWjz2gYNVaUacMuQMxKzVJCUyw49_4M-uWUXtlpTaSI5TwXvqP6G0t6F4KHMn72tu0ZySvL1APl6gPxngO7hbKtdFjWYH_y78Q6QG-DNVrD6R5cPrseDX_kXXquUbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076933753</pqid></control><display><type>article</type><title>Unique Energy Alignments of a Ternary Material System toward High‐Performance Organic Photovoltaics</title><source>Access via Wiley Online Library</source><creator>Cheng, Pei ; Wang, Jiayu ; Zhang, Qianqian ; Huang, Wenchao ; Zhu, Jingshuai ; Wang, Rui ; Chang, Sheng‐Yung ; Sun, Pengyu ; Meng, Lei ; Zhao, Hongxiang ; Cheng, Hao‐Wen ; Huang, Tianyi ; Liu, Yuqiang ; Wang, Chaochen ; Zhu, Chenhui ; You, Wei ; Zhan, Xiaowei ; Yang, Yang</creator><creatorcontrib>Cheng, Pei ; Wang, Jiayu ; Zhang, Qianqian ; Huang, Wenchao ; Zhu, Jingshuai ; Wang, Rui ; Chang, Sheng‐Yung ; Sun, Pengyu ; Meng, Lei ; Zhao, Hongxiang ; Cheng, Hao‐Wen ; Huang, Tianyi ; Liu, Yuqiang ; Wang, Chaochen ; Zhu, Chenhui ; You, Wei ; Zhan, Xiaowei ; Yang, Yang</creatorcontrib><description>Incorporating narrow‐bandgap near‐infrared absorbers as the third component in a donor/acceptor binary blend is a new strategy to improve the power conversion efficiency (PCE) of organic photovoltaics (OPV). However, there are two main restrictions: potential charge recombination in the narrow‐gap material and miscompatibility between each component. The optimized design is to employ a third component (structurally similar to the donor or acceptor) with a lowest unoccupied molecular orbital (LUMO) energy level similar to the acceptor and a highest occupied molecular orbital (HOMO) energy level similar to the donor. In this design, enhanced absorption of the active layer and enhanced charge transfer can be realized without breaking the optimized morphology of the active layer. Herein, in order to realize this design, two new narrow‐bandgap nonfullerene acceptors with suitable energy levels and chemical structures are designed, synthesized, and employed as the third component in the donor/acceptor binary blend, which boosts the PCE of OPV to 11.6%.
By employing new third components with fine design of chemical structures and energy levels, the absorption of the active layer can be broadened and charge transfer can be enhanced without a break of the optimized morphology of the active layer, leading to high‐performance ternary blend nonfullerene organic photovoltaics.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201801501</identifier><identifier>PMID: 29782685</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge transfer ; Chemical synthesis ; Design optimization ; Energy conversion efficiency ; energy level alignments ; Energy levels ; fullerene‐free ; Materials science ; Molecular chains ; Molecular orbitals ; Morphology ; nonfullerene ; Organic chemistry ; organic solar cells ; Photovoltaic cells ; Solar cells ; ternary blends</subject><ispartof>Advanced materials (Weinheim), 2018-07, Vol.30 (28), p.e1801501-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4131-d155ccabd975c249bb38e2d39a319951eea0cf72d65c4edd1bfbb42c2dc1aeef3</citedby><cites>FETCH-LOGICAL-c4131-d155ccabd975c249bb38e2d39a319951eea0cf72d65c4edd1bfbb42c2dc1aeef3</cites><orcidid>0000-0001-8833-7641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201801501$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201801501$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29782685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Pei</creatorcontrib><creatorcontrib>Wang, Jiayu</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Huang, Wenchao</creatorcontrib><creatorcontrib>Zhu, Jingshuai</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Chang, Sheng‐Yung</creatorcontrib><creatorcontrib>Sun, Pengyu</creatorcontrib><creatorcontrib>Meng, Lei</creatorcontrib><creatorcontrib>Zhao, Hongxiang</creatorcontrib><creatorcontrib>Cheng, Hao‐Wen</creatorcontrib><creatorcontrib>Huang, Tianyi</creatorcontrib><creatorcontrib>Liu, Yuqiang</creatorcontrib><creatorcontrib>Wang, Chaochen</creatorcontrib><creatorcontrib>Zhu, Chenhui</creatorcontrib><creatorcontrib>You, Wei</creatorcontrib><creatorcontrib>Zhan, Xiaowei</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><title>Unique Energy Alignments of a Ternary Material System toward High‐Performance Organic Photovoltaics</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Incorporating narrow‐bandgap near‐infrared absorbers as the third component in a donor/acceptor binary blend is a new strategy to improve the power conversion efficiency (PCE) of organic photovoltaics (OPV). However, there are two main restrictions: potential charge recombination in the narrow‐gap material and miscompatibility between each component. The optimized design is to employ a third component (structurally similar to the donor or acceptor) with a lowest unoccupied molecular orbital (LUMO) energy level similar to the acceptor and a highest occupied molecular orbital (HOMO) energy level similar to the donor. In this design, enhanced absorption of the active layer and enhanced charge transfer can be realized without breaking the optimized morphology of the active layer. Herein, in order to realize this design, two new narrow‐bandgap nonfullerene acceptors with suitable energy levels and chemical structures are designed, synthesized, and employed as the third component in the donor/acceptor binary blend, which boosts the PCE of OPV to 11.6%.
By employing new third components with fine design of chemical structures and energy levels, the absorption of the active layer can be broadened and charge transfer can be enhanced without a break of the optimized morphology of the active layer, leading to high‐performance ternary blend nonfullerene organic photovoltaics.</description><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Design optimization</subject><subject>Energy conversion efficiency</subject><subject>energy level alignments</subject><subject>Energy levels</subject><subject>fullerene‐free</subject><subject>Materials science</subject><subject>Molecular chains</subject><subject>Molecular orbitals</subject><subject>Morphology</subject><subject>nonfullerene</subject><subject>Organic chemistry</subject><subject>organic solar cells</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>ternary blends</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOwzAUhi0EgnJZGZElFpYUX-IkHituRWpFJdo5cuyT1iiJwU5B3XgEnpEnIVULSCxMZ_nOJ_3_j9ApJX1KCLtUplZ9RmhGqCB0B_WoYDSKiRS7qEckF5FM4uwAHYbwRAiRCUn20QGTacaSTPQQzBr7sgR804Cfr_CgsvOmhqYN2JVY4Sn4RvkVHqsWvFUVflyFFmrcujflDR7a-eLz_WMCvnS-Vo0G_ODnqrEaTxauda-uapXV4RjtlaoKcLK9R2h2ezO9Gkajh7v7q8Eo0jHlNDJUCK1VYWQqNItlUfAMmOFScSqloACK6DJlJhE6BmNoURZFzDQzmiqAkh-hi4332bsuVWjz2gYNVaUacMuQMxKzVJCUyw49_4M-uWUXtlpTaSI5TwXvqP6G0t6F4KHMn72tu0ZySvL1APl6gPxngO7hbKtdFjWYH_y78Q6QG-DNVrD6R5cPrseDX_kXXquUbw</recordid><startdate>20180712</startdate><enddate>20180712</enddate><creator>Cheng, Pei</creator><creator>Wang, Jiayu</creator><creator>Zhang, Qianqian</creator><creator>Huang, Wenchao</creator><creator>Zhu, Jingshuai</creator><creator>Wang, Rui</creator><creator>Chang, Sheng‐Yung</creator><creator>Sun, Pengyu</creator><creator>Meng, Lei</creator><creator>Zhao, Hongxiang</creator><creator>Cheng, Hao‐Wen</creator><creator>Huang, Tianyi</creator><creator>Liu, Yuqiang</creator><creator>Wang, Chaochen</creator><creator>Zhu, Chenhui</creator><creator>You, Wei</creator><creator>Zhan, Xiaowei</creator><creator>Yang, Yang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8833-7641</orcidid></search><sort><creationdate>20180712</creationdate><title>Unique Energy Alignments of a Ternary Material System toward High‐Performance Organic Photovoltaics</title><author>Cheng, Pei ; Wang, Jiayu ; Zhang, Qianqian ; Huang, Wenchao ; Zhu, Jingshuai ; Wang, Rui ; Chang, Sheng‐Yung ; Sun, Pengyu ; Meng, Lei ; Zhao, Hongxiang ; Cheng, Hao‐Wen ; Huang, Tianyi ; Liu, Yuqiang ; Wang, Chaochen ; Zhu, Chenhui ; You, Wei ; Zhan, Xiaowei ; Yang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4131-d155ccabd975c249bb38e2d39a319951eea0cf72d65c4edd1bfbb42c2dc1aeef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Design optimization</topic><topic>Energy conversion efficiency</topic><topic>energy level alignments</topic><topic>Energy levels</topic><topic>fullerene‐free</topic><topic>Materials science</topic><topic>Molecular chains</topic><topic>Molecular orbitals</topic><topic>Morphology</topic><topic>nonfullerene</topic><topic>Organic chemistry</topic><topic>organic solar cells</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>ternary blends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Pei</creatorcontrib><creatorcontrib>Wang, Jiayu</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Huang, Wenchao</creatorcontrib><creatorcontrib>Zhu, Jingshuai</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Chang, Sheng‐Yung</creatorcontrib><creatorcontrib>Sun, Pengyu</creatorcontrib><creatorcontrib>Meng, Lei</creatorcontrib><creatorcontrib>Zhao, Hongxiang</creatorcontrib><creatorcontrib>Cheng, Hao‐Wen</creatorcontrib><creatorcontrib>Huang, Tianyi</creatorcontrib><creatorcontrib>Liu, Yuqiang</creatorcontrib><creatorcontrib>Wang, Chaochen</creatorcontrib><creatorcontrib>Zhu, Chenhui</creatorcontrib><creatorcontrib>You, Wei</creatorcontrib><creatorcontrib>Zhan, Xiaowei</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Pei</au><au>Wang, Jiayu</au><au>Zhang, Qianqian</au><au>Huang, Wenchao</au><au>Zhu, Jingshuai</au><au>Wang, Rui</au><au>Chang, Sheng‐Yung</au><au>Sun, Pengyu</au><au>Meng, Lei</au><au>Zhao, Hongxiang</au><au>Cheng, Hao‐Wen</au><au>Huang, Tianyi</au><au>Liu, Yuqiang</au><au>Wang, Chaochen</au><au>Zhu, Chenhui</au><au>You, Wei</au><au>Zhan, Xiaowei</au><au>Yang, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unique Energy Alignments of a Ternary Material System toward High‐Performance Organic Photovoltaics</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-07-12</date><risdate>2018</risdate><volume>30</volume><issue>28</issue><spage>e1801501</spage><epage>n/a</epage><pages>e1801501-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Incorporating narrow‐bandgap near‐infrared absorbers as the third component in a donor/acceptor binary blend is a new strategy to improve the power conversion efficiency (PCE) of organic photovoltaics (OPV). However, there are two main restrictions: potential charge recombination in the narrow‐gap material and miscompatibility between each component. The optimized design is to employ a third component (structurally similar to the donor or acceptor) with a lowest unoccupied molecular orbital (LUMO) energy level similar to the acceptor and a highest occupied molecular orbital (HOMO) energy level similar to the donor. In this design, enhanced absorption of the active layer and enhanced charge transfer can be realized without breaking the optimized morphology of the active layer. Herein, in order to realize this design, two new narrow‐bandgap nonfullerene acceptors with suitable energy levels and chemical structures are designed, synthesized, and employed as the third component in the donor/acceptor binary blend, which boosts the PCE of OPV to 11.6%.
By employing new third components with fine design of chemical structures and energy levels, the absorption of the active layer can be broadened and charge transfer can be enhanced without a break of the optimized morphology of the active layer, leading to high‐performance ternary blend nonfullerene organic photovoltaics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29782685</pmid><doi>10.1002/adma.201801501</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8833-7641</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2018-07, Vol.30 (28), p.e1801501-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2042750739 |
source | Access via Wiley Online Library |
subjects | Charge transfer Chemical synthesis Design optimization Energy conversion efficiency energy level alignments Energy levels fullerene‐free Materials science Molecular chains Molecular orbitals Morphology nonfullerene Organic chemistry organic solar cells Photovoltaic cells Solar cells ternary blends |
title | Unique Energy Alignments of a Ternary Material System toward High‐Performance Organic Photovoltaics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A32%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unique%20Energy%20Alignments%20of%20a%20Ternary%20Material%20System%20toward%20High%E2%80%90Performance%20Organic%20Photovoltaics&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Cheng,%20Pei&rft.date=2018-07-12&rft.volume=30&rft.issue=28&rft.spage=e1801501&rft.epage=n/a&rft.pages=e1801501-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201801501&rft_dat=%3Cproquest_cross%3E2076933753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076933753&rft_id=info:pmid/29782685&rfr_iscdi=true |