Unique Energy Alignments of a Ternary Material System toward High‐Performance Organic Photovoltaics

Incorporating narrow‐bandgap near‐infrared absorbers as the third component in a donor/acceptor binary blend is a new strategy to improve the power conversion efficiency (PCE) of organic photovoltaics (OPV). However, there are two main restrictions: potential charge recombination in the narrow‐gap m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-07, Vol.30 (28), p.e1801501-n/a
Hauptverfasser: Cheng, Pei, Wang, Jiayu, Zhang, Qianqian, Huang, Wenchao, Zhu, Jingshuai, Wang, Rui, Chang, Sheng‐Yung, Sun, Pengyu, Meng, Lei, Zhao, Hongxiang, Cheng, Hao‐Wen, Huang, Tianyi, Liu, Yuqiang, Wang, Chaochen, Zhu, Chenhui, You, Wei, Zhan, Xiaowei, Yang, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 28
container_start_page e1801501
container_title Advanced materials (Weinheim)
container_volume 30
creator Cheng, Pei
Wang, Jiayu
Zhang, Qianqian
Huang, Wenchao
Zhu, Jingshuai
Wang, Rui
Chang, Sheng‐Yung
Sun, Pengyu
Meng, Lei
Zhao, Hongxiang
Cheng, Hao‐Wen
Huang, Tianyi
Liu, Yuqiang
Wang, Chaochen
Zhu, Chenhui
You, Wei
Zhan, Xiaowei
Yang, Yang
description Incorporating narrow‐bandgap near‐infrared absorbers as the third component in a donor/acceptor binary blend is a new strategy to improve the power conversion efficiency (PCE) of organic photovoltaics (OPV). However, there are two main restrictions: potential charge recombination in the narrow‐gap material and miscompatibility between each component. The optimized design is to employ a third component (structurally similar to the donor or acceptor) with a lowest unoccupied molecular orbital (LUMO) energy level similar to the acceptor and a highest occupied molecular orbital (HOMO) energy level similar to the donor. In this design, enhanced absorption of the active layer and enhanced charge transfer can be realized without breaking the optimized morphology of the active layer. Herein, in order to realize this design, two new narrow‐bandgap nonfullerene acceptors with suitable energy levels and chemical structures are designed, synthesized, and employed as the third component in the donor/acceptor binary blend, which boosts the PCE of OPV to 11.6%. By employing new third components with fine design of chemical structures and energy levels, the absorption of the active layer can be broadened and charge transfer can be enhanced without a break of the optimized morphology of the active layer, leading to high‐performance ternary blend nonfullerene organic photovoltaics.
doi_str_mv 10.1002/adma.201801501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2042750739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076933753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4131-d155ccabd975c249bb38e2d39a319951eea0cf72d65c4edd1bfbb42c2dc1aeef3</originalsourceid><addsrcrecordid>eNqFkbtOwzAUhi0EgnJZGZElFpYUX-IkHituRWpFJdo5cuyT1iiJwU5B3XgEnpEnIVULSCxMZ_nOJ_3_j9ApJX1KCLtUplZ9RmhGqCB0B_WoYDSKiRS7qEckF5FM4uwAHYbwRAiRCUn20QGTacaSTPQQzBr7sgR804Cfr_CgsvOmhqYN2JVY4Sn4RvkVHqsWvFUVflyFFmrcujflDR7a-eLz_WMCvnS-Vo0G_ODnqrEaTxauda-uapXV4RjtlaoKcLK9R2h2ezO9Gkajh7v7q8Eo0jHlNDJUCK1VYWQqNItlUfAMmOFScSqloACK6DJlJhE6BmNoURZFzDQzmiqAkh-hi4332bsuVWjz2gYNVaUacMuQMxKzVJCUyw49_4M-uWUXtlpTaSI5TwXvqP6G0t6F4KHMn72tu0ZySvL1APl6gPxngO7hbKtdFjWYH_y78Q6QG-DNVrD6R5cPrseDX_kXXquUbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076933753</pqid></control><display><type>article</type><title>Unique Energy Alignments of a Ternary Material System toward High‐Performance Organic Photovoltaics</title><source>Access via Wiley Online Library</source><creator>Cheng, Pei ; Wang, Jiayu ; Zhang, Qianqian ; Huang, Wenchao ; Zhu, Jingshuai ; Wang, Rui ; Chang, Sheng‐Yung ; Sun, Pengyu ; Meng, Lei ; Zhao, Hongxiang ; Cheng, Hao‐Wen ; Huang, Tianyi ; Liu, Yuqiang ; Wang, Chaochen ; Zhu, Chenhui ; You, Wei ; Zhan, Xiaowei ; Yang, Yang</creator><creatorcontrib>Cheng, Pei ; Wang, Jiayu ; Zhang, Qianqian ; Huang, Wenchao ; Zhu, Jingshuai ; Wang, Rui ; Chang, Sheng‐Yung ; Sun, Pengyu ; Meng, Lei ; Zhao, Hongxiang ; Cheng, Hao‐Wen ; Huang, Tianyi ; Liu, Yuqiang ; Wang, Chaochen ; Zhu, Chenhui ; You, Wei ; Zhan, Xiaowei ; Yang, Yang</creatorcontrib><description>Incorporating narrow‐bandgap near‐infrared absorbers as the third component in a donor/acceptor binary blend is a new strategy to improve the power conversion efficiency (PCE) of organic photovoltaics (OPV). However, there are two main restrictions: potential charge recombination in the narrow‐gap material and miscompatibility between each component. The optimized design is to employ a third component (structurally similar to the donor or acceptor) with a lowest unoccupied molecular orbital (LUMO) energy level similar to the acceptor and a highest occupied molecular orbital (HOMO) energy level similar to the donor. In this design, enhanced absorption of the active layer and enhanced charge transfer can be realized without breaking the optimized morphology of the active layer. Herein, in order to realize this design, two new narrow‐bandgap nonfullerene acceptors with suitable energy levels and chemical structures are designed, synthesized, and employed as the third component in the donor/acceptor binary blend, which boosts the PCE of OPV to 11.6%. By employing new third components with fine design of chemical structures and energy levels, the absorption of the active layer can be broadened and charge transfer can be enhanced without a break of the optimized morphology of the active layer, leading to high‐performance ternary blend nonfullerene organic photovoltaics.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201801501</identifier><identifier>PMID: 29782685</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge transfer ; Chemical synthesis ; Design optimization ; Energy conversion efficiency ; energy level alignments ; Energy levels ; fullerene‐free ; Materials science ; Molecular chains ; Molecular orbitals ; Morphology ; nonfullerene ; Organic chemistry ; organic solar cells ; Photovoltaic cells ; Solar cells ; ternary blends</subject><ispartof>Advanced materials (Weinheim), 2018-07, Vol.30 (28), p.e1801501-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4131-d155ccabd975c249bb38e2d39a319951eea0cf72d65c4edd1bfbb42c2dc1aeef3</citedby><cites>FETCH-LOGICAL-c4131-d155ccabd975c249bb38e2d39a319951eea0cf72d65c4edd1bfbb42c2dc1aeef3</cites><orcidid>0000-0001-8833-7641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201801501$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201801501$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29782685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Pei</creatorcontrib><creatorcontrib>Wang, Jiayu</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Huang, Wenchao</creatorcontrib><creatorcontrib>Zhu, Jingshuai</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Chang, Sheng‐Yung</creatorcontrib><creatorcontrib>Sun, Pengyu</creatorcontrib><creatorcontrib>Meng, Lei</creatorcontrib><creatorcontrib>Zhao, Hongxiang</creatorcontrib><creatorcontrib>Cheng, Hao‐Wen</creatorcontrib><creatorcontrib>Huang, Tianyi</creatorcontrib><creatorcontrib>Liu, Yuqiang</creatorcontrib><creatorcontrib>Wang, Chaochen</creatorcontrib><creatorcontrib>Zhu, Chenhui</creatorcontrib><creatorcontrib>You, Wei</creatorcontrib><creatorcontrib>Zhan, Xiaowei</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><title>Unique Energy Alignments of a Ternary Material System toward High‐Performance Organic Photovoltaics</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Incorporating narrow‐bandgap near‐infrared absorbers as the third component in a donor/acceptor binary blend is a new strategy to improve the power conversion efficiency (PCE) of organic photovoltaics (OPV). However, there are two main restrictions: potential charge recombination in the narrow‐gap material and miscompatibility between each component. The optimized design is to employ a third component (structurally similar to the donor or acceptor) with a lowest unoccupied molecular orbital (LUMO) energy level similar to the acceptor and a highest occupied molecular orbital (HOMO) energy level similar to the donor. In this design, enhanced absorption of the active layer and enhanced charge transfer can be realized without breaking the optimized morphology of the active layer. Herein, in order to realize this design, two new narrow‐bandgap nonfullerene acceptors with suitable energy levels and chemical structures are designed, synthesized, and employed as the third component in the donor/acceptor binary blend, which boosts the PCE of OPV to 11.6%. By employing new third components with fine design of chemical structures and energy levels, the absorption of the active layer can be broadened and charge transfer can be enhanced without a break of the optimized morphology of the active layer, leading to high‐performance ternary blend nonfullerene organic photovoltaics.</description><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Design optimization</subject><subject>Energy conversion efficiency</subject><subject>energy level alignments</subject><subject>Energy levels</subject><subject>fullerene‐free</subject><subject>Materials science</subject><subject>Molecular chains</subject><subject>Molecular orbitals</subject><subject>Morphology</subject><subject>nonfullerene</subject><subject>Organic chemistry</subject><subject>organic solar cells</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>ternary blends</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOwzAUhi0EgnJZGZElFpYUX-IkHituRWpFJdo5cuyT1iiJwU5B3XgEnpEnIVULSCxMZ_nOJ_3_j9ApJX1KCLtUplZ9RmhGqCB0B_WoYDSKiRS7qEckF5FM4uwAHYbwRAiRCUn20QGTacaSTPQQzBr7sgR804Cfr_CgsvOmhqYN2JVY4Sn4RvkVHqsWvFUVflyFFmrcujflDR7a-eLz_WMCvnS-Vo0G_ODnqrEaTxauda-uapXV4RjtlaoKcLK9R2h2ezO9Gkajh7v7q8Eo0jHlNDJUCK1VYWQqNItlUfAMmOFScSqloACK6DJlJhE6BmNoURZFzDQzmiqAkh-hi4332bsuVWjz2gYNVaUacMuQMxKzVJCUyw49_4M-uWUXtlpTaSI5TwXvqP6G0t6F4KHMn72tu0ZySvL1APl6gPxngO7hbKtdFjWYH_y78Q6QG-DNVrD6R5cPrseDX_kXXquUbw</recordid><startdate>20180712</startdate><enddate>20180712</enddate><creator>Cheng, Pei</creator><creator>Wang, Jiayu</creator><creator>Zhang, Qianqian</creator><creator>Huang, Wenchao</creator><creator>Zhu, Jingshuai</creator><creator>Wang, Rui</creator><creator>Chang, Sheng‐Yung</creator><creator>Sun, Pengyu</creator><creator>Meng, Lei</creator><creator>Zhao, Hongxiang</creator><creator>Cheng, Hao‐Wen</creator><creator>Huang, Tianyi</creator><creator>Liu, Yuqiang</creator><creator>Wang, Chaochen</creator><creator>Zhu, Chenhui</creator><creator>You, Wei</creator><creator>Zhan, Xiaowei</creator><creator>Yang, Yang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8833-7641</orcidid></search><sort><creationdate>20180712</creationdate><title>Unique Energy Alignments of a Ternary Material System toward High‐Performance Organic Photovoltaics</title><author>Cheng, Pei ; Wang, Jiayu ; Zhang, Qianqian ; Huang, Wenchao ; Zhu, Jingshuai ; Wang, Rui ; Chang, Sheng‐Yung ; Sun, Pengyu ; Meng, Lei ; Zhao, Hongxiang ; Cheng, Hao‐Wen ; Huang, Tianyi ; Liu, Yuqiang ; Wang, Chaochen ; Zhu, Chenhui ; You, Wei ; Zhan, Xiaowei ; Yang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4131-d155ccabd975c249bb38e2d39a319951eea0cf72d65c4edd1bfbb42c2dc1aeef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Design optimization</topic><topic>Energy conversion efficiency</topic><topic>energy level alignments</topic><topic>Energy levels</topic><topic>fullerene‐free</topic><topic>Materials science</topic><topic>Molecular chains</topic><topic>Molecular orbitals</topic><topic>Morphology</topic><topic>nonfullerene</topic><topic>Organic chemistry</topic><topic>organic solar cells</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>ternary blends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Pei</creatorcontrib><creatorcontrib>Wang, Jiayu</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Huang, Wenchao</creatorcontrib><creatorcontrib>Zhu, Jingshuai</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Chang, Sheng‐Yung</creatorcontrib><creatorcontrib>Sun, Pengyu</creatorcontrib><creatorcontrib>Meng, Lei</creatorcontrib><creatorcontrib>Zhao, Hongxiang</creatorcontrib><creatorcontrib>Cheng, Hao‐Wen</creatorcontrib><creatorcontrib>Huang, Tianyi</creatorcontrib><creatorcontrib>Liu, Yuqiang</creatorcontrib><creatorcontrib>Wang, Chaochen</creatorcontrib><creatorcontrib>Zhu, Chenhui</creatorcontrib><creatorcontrib>You, Wei</creatorcontrib><creatorcontrib>Zhan, Xiaowei</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Pei</au><au>Wang, Jiayu</au><au>Zhang, Qianqian</au><au>Huang, Wenchao</au><au>Zhu, Jingshuai</au><au>Wang, Rui</au><au>Chang, Sheng‐Yung</au><au>Sun, Pengyu</au><au>Meng, Lei</au><au>Zhao, Hongxiang</au><au>Cheng, Hao‐Wen</au><au>Huang, Tianyi</au><au>Liu, Yuqiang</au><au>Wang, Chaochen</au><au>Zhu, Chenhui</au><au>You, Wei</au><au>Zhan, Xiaowei</au><au>Yang, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unique Energy Alignments of a Ternary Material System toward High‐Performance Organic Photovoltaics</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-07-12</date><risdate>2018</risdate><volume>30</volume><issue>28</issue><spage>e1801501</spage><epage>n/a</epage><pages>e1801501-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Incorporating narrow‐bandgap near‐infrared absorbers as the third component in a donor/acceptor binary blend is a new strategy to improve the power conversion efficiency (PCE) of organic photovoltaics (OPV). However, there are two main restrictions: potential charge recombination in the narrow‐gap material and miscompatibility between each component. The optimized design is to employ a third component (structurally similar to the donor or acceptor) with a lowest unoccupied molecular orbital (LUMO) energy level similar to the acceptor and a highest occupied molecular orbital (HOMO) energy level similar to the donor. In this design, enhanced absorption of the active layer and enhanced charge transfer can be realized without breaking the optimized morphology of the active layer. Herein, in order to realize this design, two new narrow‐bandgap nonfullerene acceptors with suitable energy levels and chemical structures are designed, synthesized, and employed as the third component in the donor/acceptor binary blend, which boosts the PCE of OPV to 11.6%. By employing new third components with fine design of chemical structures and energy levels, the absorption of the active layer can be broadened and charge transfer can be enhanced without a break of the optimized morphology of the active layer, leading to high‐performance ternary blend nonfullerene organic photovoltaics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29782685</pmid><doi>10.1002/adma.201801501</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8833-7641</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-07, Vol.30 (28), p.e1801501-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2042750739
source Access via Wiley Online Library
subjects Charge transfer
Chemical synthesis
Design optimization
Energy conversion efficiency
energy level alignments
Energy levels
fullerene‐free
Materials science
Molecular chains
Molecular orbitals
Morphology
nonfullerene
Organic chemistry
organic solar cells
Photovoltaic cells
Solar cells
ternary blends
title Unique Energy Alignments of a Ternary Material System toward High‐Performance Organic Photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A32%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unique%20Energy%20Alignments%20of%20a%20Ternary%20Material%20System%20toward%20High%E2%80%90Performance%20Organic%20Photovoltaics&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Cheng,%20Pei&rft.date=2018-07-12&rft.volume=30&rft.issue=28&rft.spage=e1801501&rft.epage=n/a&rft.pages=e1801501-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201801501&rft_dat=%3Cproquest_cross%3E2076933753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076933753&rft_id=info:pmid/29782685&rfr_iscdi=true