An image analysis method for prostate tissue classification: preliminary validation with resonance sensor data
Resonance sensor systems have been shown to be able to distinguish between cancerous and normal prostate tissue, in vitro. The aim of this study was to improve the accuracy of the tissue determination, to simplify the tissue classification process with computerized morphometrical analysis, to decrea...
Gespeichert in:
Veröffentlicht in: | Journal of medical engineering & technology 2009, Vol.33 (1), p.18-24 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 18 |
container_title | Journal of medical engineering & technology |
container_volume | 33 |
creator | Lindberg, P. L. Andersson, B. M. Bergh, A. Ljungberg, B. Lindahl, O. A. |
description | Resonance sensor systems have been shown to be able to distinguish between cancerous and normal prostate tissue, in vitro. The aim of this study was to improve the accuracy of the tissue determination, to simplify the tissue classification process with computerized morphometrical analysis, to decrease the risk of human errors, and to reduce the processing time. In this article we present our newly developed computerized classification method based on image analysis. In relation to earlier resonance sensor studies we increased the number of normal prostate tissue classes into stroma, epithelial tissue, lumen and stones. The linearity between the impression depth and tissue classes was calculated using multiple linear regression (R2 = 0.68, n = 109, p < 0.001) and partial least squares (R2 = 0.55, n = 109, p < 0.001). Thus it can be concluded that there existed a linear relationship between the impression depth and the tissue classes. The new image analysis method was easy to handle and decreased the classification time by 80%. |
doi_str_mv | 10.1080/03091900801945200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20422898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66779556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3759-3fa54a223c7fca6e937dccec243c9a58a88a1033b06e6313db7265809aa134983</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhi0EoqHwA7ggn7hAwB-73jVwicqnVIkLIG7WxDvbuPLaqe0lyr_HbSIQQmpPtjzPvHpnXhPylLNXnPXsNZNMc83qleumFYzdIwveqGbZCvHzPllc15cVECfkUc6XjDHRCPaQnHDNuepbtiBhFaib4AIpBPD77DKdsGziQMeY6DbFXKAgLS7nGan1kLMbnYXiYnhT6-jd5AKkPf0F3g0373TnyoYmzDFAsEgzhlzFahEekwcj-IxPjucp-f7xw7ezz8vzr5--nK3Ol1Z2rV7KEdoGhJC2Gy0o1LIbrEUrGmk1tD30PXAm5ZopVJLLYd0J1fZMA3DZ6F6ekpcH3bzD7bw221SHTHsTwZn37sfKxHRh5mk2vNdSV_zF3bgvs-m56ir9_EDX9VzNmIuZXLboPQSMczZKdZ1uW3UnKFgjRH9jlx9AWxeeE45_HHBmrqM2_0Vde54dxef1hMPfjmO2FXh3AFyoWU6wi8kPpsDexzSmmozLRt6m__af9g2CLxsLCc1lnFP9LfkWd78B8FfLLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20422898</pqid></control><display><type>article</type><title>An image analysis method for prostate tissue classification: preliminary validation with resonance sensor data</title><source>MEDLINE</source><source>Taylor & Francis Medical Library - CRKN</source><source>Taylor & Francis Journals Complete</source><creator>Lindberg, P. L. ; Andersson, B. M. ; Bergh, A. ; Ljungberg, B. ; Lindahl, O. A.</creator><creatorcontrib>Lindberg, P. L. ; Andersson, B. M. ; Bergh, A. ; Ljungberg, B. ; Lindahl, O. A.</creatorcontrib><description>Resonance sensor systems have been shown to be able to distinguish between cancerous and normal prostate tissue, in vitro. The aim of this study was to improve the accuracy of the tissue determination, to simplify the tissue classification process with computerized morphometrical analysis, to decrease the risk of human errors, and to reduce the processing time. In this article we present our newly developed computerized classification method based on image analysis. In relation to earlier resonance sensor studies we increased the number of normal prostate tissue classes into stroma, epithelial tissue, lumen and stones. The linearity between the impression depth and tissue classes was calculated using multiple linear regression (R2 = 0.68, n = 109, p < 0.001) and partial least squares (R2 = 0.55, n = 109, p < 0.001). Thus it can be concluded that there existed a linear relationship between the impression depth and the tissue classes. The new image analysis method was easy to handle and decreased the classification time by 80%.</description><identifier>ISSN: 0309-1902</identifier><identifier>ISSN: 1464-522X</identifier><identifier>EISSN: 1464-522X</identifier><identifier>DOI: 10.1080/03091900801945200</identifier><identifier>PMID: 19116850</identifier><language>eng</language><publisher>England: Informa UK Ltd</publisher><subject>Algorithms ; classification ; Diagnostic Imaging - methods ; Equipment Design ; fysik ; Humans ; Image analysis ; Image Processing, Computer-Assisted - instrumentation ; Image Processing, Computer-Assisted - methods ; Least-Squares Analysis ; Linear Models ; Male ; Medical engineering ; Medical Engineering for Healthcare ; Medicinsk teknik ; Medicinsk teknik för hälsovård ; Multivariate Analysis ; Other technology ; Partial least square ; Physics ; Prostate - pathology ; Prostate cancer ; prostate tissue ; Prostatic Neoplasms - diagnosis ; Reproducibility of Results ; Resonance sensor ; Signal Processing, Computer-Assisted ; Stiffness ; TECHNOLOGY ; TEKNIKVETENSKAP ; Övriga teknikvetenskaper</subject><ispartof>Journal of medical engineering & technology, 2009, Vol.33 (1), p.18-24</ispartof><rights>2009 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3759-3fa54a223c7fca6e937dccec243c9a58a88a1033b06e6313db7265809aa134983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03091900801945200$$EPDF$$P50$$Ginformahealthcare$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03091900801945200$$EHTML$$P50$$Ginformahealthcare$$H</linktohtml><link.rule.ids>230,314,776,780,881,4010,27902,27903,27904,59623,59729,60412,60518,61197,61232,61378,61413</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19116850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-8167$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-18939$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindberg, P. L.</creatorcontrib><creatorcontrib>Andersson, B. M.</creatorcontrib><creatorcontrib>Bergh, A.</creatorcontrib><creatorcontrib>Ljungberg, B.</creatorcontrib><creatorcontrib>Lindahl, O. A.</creatorcontrib><title>An image analysis method for prostate tissue classification: preliminary validation with resonance sensor data</title><title>Journal of medical engineering & technology</title><addtitle>J Med Eng Technol</addtitle><description>Resonance sensor systems have been shown to be able to distinguish between cancerous and normal prostate tissue, in vitro. The aim of this study was to improve the accuracy of the tissue determination, to simplify the tissue classification process with computerized morphometrical analysis, to decrease the risk of human errors, and to reduce the processing time. In this article we present our newly developed computerized classification method based on image analysis. In relation to earlier resonance sensor studies we increased the number of normal prostate tissue classes into stroma, epithelial tissue, lumen and stones. The linearity between the impression depth and tissue classes was calculated using multiple linear regression (R2 = 0.68, n = 109, p < 0.001) and partial least squares (R2 = 0.55, n = 109, p < 0.001). Thus it can be concluded that there existed a linear relationship between the impression depth and the tissue classes. The new image analysis method was easy to handle and decreased the classification time by 80%.</description><subject>Algorithms</subject><subject>classification</subject><subject>Diagnostic Imaging - methods</subject><subject>Equipment Design</subject><subject>fysik</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image Processing, Computer-Assisted - instrumentation</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Least-Squares Analysis</subject><subject>Linear Models</subject><subject>Male</subject><subject>Medical engineering</subject><subject>Medical Engineering for Healthcare</subject><subject>Medicinsk teknik</subject><subject>Medicinsk teknik för hälsovård</subject><subject>Multivariate Analysis</subject><subject>Other technology</subject><subject>Partial least square</subject><subject>Physics</subject><subject>Prostate - pathology</subject><subject>Prostate cancer</subject><subject>prostate tissue</subject><subject>Prostatic Neoplasms - diagnosis</subject><subject>Reproducibility of Results</subject><subject>Resonance sensor</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Stiffness</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><subject>Övriga teknikvetenskaper</subject><issn>0309-1902</issn><issn>1464-522X</issn><issn>1464-522X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1vEzEQhi0EoqHwA7ggn7hAwB-73jVwicqnVIkLIG7WxDvbuPLaqe0lyr_HbSIQQmpPtjzPvHpnXhPylLNXnPXsNZNMc83qleumFYzdIwveqGbZCvHzPllc15cVECfkUc6XjDHRCPaQnHDNuepbtiBhFaib4AIpBPD77DKdsGziQMeY6DbFXKAgLS7nGan1kLMbnYXiYnhT6-jd5AKkPf0F3g0373TnyoYmzDFAsEgzhlzFahEekwcj-IxPjucp-f7xw7ezz8vzr5--nK3Ol1Z2rV7KEdoGhJC2Gy0o1LIbrEUrGmk1tD30PXAm5ZopVJLLYd0J1fZMA3DZ6F6ekpcH3bzD7bw221SHTHsTwZn37sfKxHRh5mk2vNdSV_zF3bgvs-m56ir9_EDX9VzNmIuZXLboPQSMczZKdZ1uW3UnKFgjRH9jlx9AWxeeE45_HHBmrqM2_0Vde54dxef1hMPfjmO2FXh3AFyoWU6wi8kPpsDexzSmmozLRt6m__af9g2CLxsLCc1lnFP9LfkWd78B8FfLLQ</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Lindberg, P. L.</creator><creator>Andersson, B. M.</creator><creator>Bergh, A.</creator><creator>Ljungberg, B.</creator><creator>Lindahl, O. A.</creator><general>Informa UK Ltd</general><general>Taylor & Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope></search><sort><creationdate>2009</creationdate><title>An image analysis method for prostate tissue classification: preliminary validation with resonance sensor data</title><author>Lindberg, P. L. ; Andersson, B. M. ; Bergh, A. ; Ljungberg, B. ; Lindahl, O. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3759-3fa54a223c7fca6e937dccec243c9a58a88a1033b06e6313db7265809aa134983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>classification</topic><topic>Diagnostic Imaging - methods</topic><topic>Equipment Design</topic><topic>fysik</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image Processing, Computer-Assisted - instrumentation</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Least-Squares Analysis</topic><topic>Linear Models</topic><topic>Male</topic><topic>Medical engineering</topic><topic>Medical Engineering for Healthcare</topic><topic>Medicinsk teknik</topic><topic>Medicinsk teknik för hälsovård</topic><topic>Multivariate Analysis</topic><topic>Other technology</topic><topic>Partial least square</topic><topic>Physics</topic><topic>Prostate - pathology</topic><topic>Prostate cancer</topic><topic>prostate tissue</topic><topic>Prostatic Neoplasms - diagnosis</topic><topic>Reproducibility of Results</topic><topic>Resonance sensor</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Stiffness</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><topic>Övriga teknikvetenskaper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindberg, P. L.</creatorcontrib><creatorcontrib>Andersson, B. M.</creatorcontrib><creatorcontrib>Bergh, A.</creatorcontrib><creatorcontrib>Ljungberg, B.</creatorcontrib><creatorcontrib>Lindahl, O. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Journal of medical engineering & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindberg, P. L.</au><au>Andersson, B. M.</au><au>Bergh, A.</au><au>Ljungberg, B.</au><au>Lindahl, O. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An image analysis method for prostate tissue classification: preliminary validation with resonance sensor data</atitle><jtitle>Journal of medical engineering & technology</jtitle><addtitle>J Med Eng Technol</addtitle><date>2009</date><risdate>2009</risdate><volume>33</volume><issue>1</issue><spage>18</spage><epage>24</epage><pages>18-24</pages><issn>0309-1902</issn><issn>1464-522X</issn><eissn>1464-522X</eissn><abstract>Resonance sensor systems have been shown to be able to distinguish between cancerous and normal prostate tissue, in vitro. The aim of this study was to improve the accuracy of the tissue determination, to simplify the tissue classification process with computerized morphometrical analysis, to decrease the risk of human errors, and to reduce the processing time. In this article we present our newly developed computerized classification method based on image analysis. In relation to earlier resonance sensor studies we increased the number of normal prostate tissue classes into stroma, epithelial tissue, lumen and stones. The linearity between the impression depth and tissue classes was calculated using multiple linear regression (R2 = 0.68, n = 109, p < 0.001) and partial least squares (R2 = 0.55, n = 109, p < 0.001). Thus it can be concluded that there existed a linear relationship between the impression depth and the tissue classes. The new image analysis method was easy to handle and decreased the classification time by 80%.</abstract><cop>England</cop><pub>Informa UK Ltd</pub><pmid>19116850</pmid><doi>10.1080/03091900801945200</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0309-1902 |
ispartof | Journal of medical engineering & technology, 2009, Vol.33 (1), p.18-24 |
issn | 0309-1902 1464-522X 1464-522X |
language | eng |
recordid | cdi_proquest_miscellaneous_20422898 |
source | MEDLINE; Taylor & Francis Medical Library - CRKN; Taylor & Francis Journals Complete |
subjects | Algorithms classification Diagnostic Imaging - methods Equipment Design fysik Humans Image analysis Image Processing, Computer-Assisted - instrumentation Image Processing, Computer-Assisted - methods Least-Squares Analysis Linear Models Male Medical engineering Medical Engineering for Healthcare Medicinsk teknik Medicinsk teknik för hälsovård Multivariate Analysis Other technology Partial least square Physics Prostate - pathology Prostate cancer prostate tissue Prostatic Neoplasms - diagnosis Reproducibility of Results Resonance sensor Signal Processing, Computer-Assisted Stiffness TECHNOLOGY TEKNIKVETENSKAP Övriga teknikvetenskaper |
title | An image analysis method for prostate tissue classification: preliminary validation with resonance sensor data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20image%20analysis%20method%20for%20prostate%20tissue%20classification:%20preliminary%20validation%20with%20resonance%20sensor%20data&rft.jtitle=Journal%20of%20medical%20engineering%20&%20technology&rft.au=Lindberg,%20P.%20L.&rft.date=2009&rft.volume=33&rft.issue=1&rft.spage=18&rft.epage=24&rft.pages=18-24&rft.issn=0309-1902&rft.eissn=1464-522X&rft_id=info:doi/10.1080/03091900801945200&rft_dat=%3Cproquest_cross%3E66779556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20422898&rft_id=info:pmid/19116850&rfr_iscdi=true |