An image analysis method for prostate tissue classification: preliminary validation with resonance sensor data

Resonance sensor systems have been shown to be able to distinguish between cancerous and normal prostate tissue, in vitro. The aim of this study was to improve the accuracy of the tissue determination, to simplify the tissue classification process with computerized morphometrical analysis, to decrea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical engineering & technology 2009, Vol.33 (1), p.18-24
Hauptverfasser: Lindberg, P. L., Andersson, B. M., Bergh, A., Ljungberg, B., Lindahl, O. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 18
container_title Journal of medical engineering & technology
container_volume 33
creator Lindberg, P. L.
Andersson, B. M.
Bergh, A.
Ljungberg, B.
Lindahl, O. A.
description Resonance sensor systems have been shown to be able to distinguish between cancerous and normal prostate tissue, in vitro. The aim of this study was to improve the accuracy of the tissue determination, to simplify the tissue classification process with computerized morphometrical analysis, to decrease the risk of human errors, and to reduce the processing time. In this article we present our newly developed computerized classification method based on image analysis. In relation to earlier resonance sensor studies we increased the number of normal prostate tissue classes into stroma, epithelial tissue, lumen and stones. The linearity between the impression depth and tissue classes was calculated using multiple linear regression (R2 = 0.68, n = 109, p < 0.001) and partial least squares (R2 = 0.55, n = 109, p < 0.001). Thus it can be concluded that there existed a linear relationship between the impression depth and the tissue classes. The new image analysis method was easy to handle and decreased the classification time by 80%.
doi_str_mv 10.1080/03091900801945200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20422898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66779556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3759-3fa54a223c7fca6e937dccec243c9a58a88a1033b06e6313db7265809aa134983</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhi0EoqHwA7ggn7hAwB-73jVwicqnVIkLIG7WxDvbuPLaqe0lyr_HbSIQQmpPtjzPvHpnXhPylLNXnPXsNZNMc83qleumFYzdIwveqGbZCvHzPllc15cVECfkUc6XjDHRCPaQnHDNuepbtiBhFaib4AIpBPD77DKdsGziQMeY6DbFXKAgLS7nGan1kLMbnYXiYnhT6-jd5AKkPf0F3g0373TnyoYmzDFAsEgzhlzFahEekwcj-IxPjucp-f7xw7ezz8vzr5--nK3Ol1Z2rV7KEdoGhJC2Gy0o1LIbrEUrGmk1tD30PXAm5ZopVJLLYd0J1fZMA3DZ6F6ekpcH3bzD7bw221SHTHsTwZn37sfKxHRh5mk2vNdSV_zF3bgvs-m56ir9_EDX9VzNmIuZXLboPQSMczZKdZ1uW3UnKFgjRH9jlx9AWxeeE45_HHBmrqM2_0Vde54dxef1hMPfjmO2FXh3AFyoWU6wi8kPpsDexzSmmozLRt6m__af9g2CLxsLCc1lnFP9LfkWd78B8FfLLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20422898</pqid></control><display><type>article</type><title>An image analysis method for prostate tissue classification: preliminary validation with resonance sensor data</title><source>MEDLINE</source><source>Taylor &amp; Francis Medical Library - CRKN</source><source>Taylor &amp; Francis Journals Complete</source><creator>Lindberg, P. L. ; Andersson, B. M. ; Bergh, A. ; Ljungberg, B. ; Lindahl, O. A.</creator><creatorcontrib>Lindberg, P. L. ; Andersson, B. M. ; Bergh, A. ; Ljungberg, B. ; Lindahl, O. A.</creatorcontrib><description>Resonance sensor systems have been shown to be able to distinguish between cancerous and normal prostate tissue, in vitro. The aim of this study was to improve the accuracy of the tissue determination, to simplify the tissue classification process with computerized morphometrical analysis, to decrease the risk of human errors, and to reduce the processing time. In this article we present our newly developed computerized classification method based on image analysis. In relation to earlier resonance sensor studies we increased the number of normal prostate tissue classes into stroma, epithelial tissue, lumen and stones. The linearity between the impression depth and tissue classes was calculated using multiple linear regression (R2 = 0.68, n = 109, p &lt; 0.001) and partial least squares (R2 = 0.55, n = 109, p &lt; 0.001). Thus it can be concluded that there existed a linear relationship between the impression depth and the tissue classes. The new image analysis method was easy to handle and decreased the classification time by 80%.</description><identifier>ISSN: 0309-1902</identifier><identifier>ISSN: 1464-522X</identifier><identifier>EISSN: 1464-522X</identifier><identifier>DOI: 10.1080/03091900801945200</identifier><identifier>PMID: 19116850</identifier><language>eng</language><publisher>England: Informa UK Ltd</publisher><subject>Algorithms ; classification ; Diagnostic Imaging - methods ; Equipment Design ; fysik ; Humans ; Image analysis ; Image Processing, Computer-Assisted - instrumentation ; Image Processing, Computer-Assisted - methods ; Least-Squares Analysis ; Linear Models ; Male ; Medical engineering ; Medical Engineering for Healthcare ; Medicinsk teknik ; Medicinsk teknik för hälsovård ; Multivariate Analysis ; Other technology ; Partial least square ; Physics ; Prostate - pathology ; Prostate cancer ; prostate tissue ; Prostatic Neoplasms - diagnosis ; Reproducibility of Results ; Resonance sensor ; Signal Processing, Computer-Assisted ; Stiffness ; TECHNOLOGY ; TEKNIKVETENSKAP ; Övriga teknikvetenskaper</subject><ispartof>Journal of medical engineering &amp; technology, 2009, Vol.33 (1), p.18-24</ispartof><rights>2009 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3759-3fa54a223c7fca6e937dccec243c9a58a88a1033b06e6313db7265809aa134983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03091900801945200$$EPDF$$P50$$Ginformahealthcare$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03091900801945200$$EHTML$$P50$$Ginformahealthcare$$H</linktohtml><link.rule.ids>230,314,776,780,881,4010,27902,27903,27904,59623,59729,60412,60518,61197,61232,61378,61413</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19116850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-8167$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-18939$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindberg, P. L.</creatorcontrib><creatorcontrib>Andersson, B. M.</creatorcontrib><creatorcontrib>Bergh, A.</creatorcontrib><creatorcontrib>Ljungberg, B.</creatorcontrib><creatorcontrib>Lindahl, O. A.</creatorcontrib><title>An image analysis method for prostate tissue classification: preliminary validation with resonance sensor data</title><title>Journal of medical engineering &amp; technology</title><addtitle>J Med Eng Technol</addtitle><description>Resonance sensor systems have been shown to be able to distinguish between cancerous and normal prostate tissue, in vitro. The aim of this study was to improve the accuracy of the tissue determination, to simplify the tissue classification process with computerized morphometrical analysis, to decrease the risk of human errors, and to reduce the processing time. In this article we present our newly developed computerized classification method based on image analysis. In relation to earlier resonance sensor studies we increased the number of normal prostate tissue classes into stroma, epithelial tissue, lumen and stones. The linearity between the impression depth and tissue classes was calculated using multiple linear regression (R2 = 0.68, n = 109, p &lt; 0.001) and partial least squares (R2 = 0.55, n = 109, p &lt; 0.001). Thus it can be concluded that there existed a linear relationship between the impression depth and the tissue classes. The new image analysis method was easy to handle and decreased the classification time by 80%.</description><subject>Algorithms</subject><subject>classification</subject><subject>Diagnostic Imaging - methods</subject><subject>Equipment Design</subject><subject>fysik</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image Processing, Computer-Assisted - instrumentation</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Least-Squares Analysis</subject><subject>Linear Models</subject><subject>Male</subject><subject>Medical engineering</subject><subject>Medical Engineering for Healthcare</subject><subject>Medicinsk teknik</subject><subject>Medicinsk teknik för hälsovård</subject><subject>Multivariate Analysis</subject><subject>Other technology</subject><subject>Partial least square</subject><subject>Physics</subject><subject>Prostate - pathology</subject><subject>Prostate cancer</subject><subject>prostate tissue</subject><subject>Prostatic Neoplasms - diagnosis</subject><subject>Reproducibility of Results</subject><subject>Resonance sensor</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Stiffness</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><subject>Övriga teknikvetenskaper</subject><issn>0309-1902</issn><issn>1464-522X</issn><issn>1464-522X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1vEzEQhi0EoqHwA7ggn7hAwB-73jVwicqnVIkLIG7WxDvbuPLaqe0lyr_HbSIQQmpPtjzPvHpnXhPylLNXnPXsNZNMc83qleumFYzdIwveqGbZCvHzPllc15cVECfkUc6XjDHRCPaQnHDNuepbtiBhFaib4AIpBPD77DKdsGziQMeY6DbFXKAgLS7nGan1kLMbnYXiYnhT6-jd5AKkPf0F3g0373TnyoYmzDFAsEgzhlzFahEekwcj-IxPjucp-f7xw7ezz8vzr5--nK3Ol1Z2rV7KEdoGhJC2Gy0o1LIbrEUrGmk1tD30PXAm5ZopVJLLYd0J1fZMA3DZ6F6ekpcH3bzD7bw221SHTHsTwZn37sfKxHRh5mk2vNdSV_zF3bgvs-m56ir9_EDX9VzNmIuZXLboPQSMczZKdZ1uW3UnKFgjRH9jlx9AWxeeE45_HHBmrqM2_0Vde54dxef1hMPfjmO2FXh3AFyoWU6wi8kPpsDexzSmmozLRt6m__af9g2CLxsLCc1lnFP9LfkWd78B8FfLLQ</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Lindberg, P. L.</creator><creator>Andersson, B. M.</creator><creator>Bergh, A.</creator><creator>Ljungberg, B.</creator><creator>Lindahl, O. A.</creator><general>Informa UK Ltd</general><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope></search><sort><creationdate>2009</creationdate><title>An image analysis method for prostate tissue classification: preliminary validation with resonance sensor data</title><author>Lindberg, P. L. ; Andersson, B. M. ; Bergh, A. ; Ljungberg, B. ; Lindahl, O. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3759-3fa54a223c7fca6e937dccec243c9a58a88a1033b06e6313db7265809aa134983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>classification</topic><topic>Diagnostic Imaging - methods</topic><topic>Equipment Design</topic><topic>fysik</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image Processing, Computer-Assisted - instrumentation</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Least-Squares Analysis</topic><topic>Linear Models</topic><topic>Male</topic><topic>Medical engineering</topic><topic>Medical Engineering for Healthcare</topic><topic>Medicinsk teknik</topic><topic>Medicinsk teknik för hälsovård</topic><topic>Multivariate Analysis</topic><topic>Other technology</topic><topic>Partial least square</topic><topic>Physics</topic><topic>Prostate - pathology</topic><topic>Prostate cancer</topic><topic>prostate tissue</topic><topic>Prostatic Neoplasms - diagnosis</topic><topic>Reproducibility of Results</topic><topic>Resonance sensor</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Stiffness</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><topic>Övriga teknikvetenskaper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindberg, P. L.</creatorcontrib><creatorcontrib>Andersson, B. M.</creatorcontrib><creatorcontrib>Bergh, A.</creatorcontrib><creatorcontrib>Ljungberg, B.</creatorcontrib><creatorcontrib>Lindahl, O. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Journal of medical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindberg, P. L.</au><au>Andersson, B. M.</au><au>Bergh, A.</au><au>Ljungberg, B.</au><au>Lindahl, O. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An image analysis method for prostate tissue classification: preliminary validation with resonance sensor data</atitle><jtitle>Journal of medical engineering &amp; technology</jtitle><addtitle>J Med Eng Technol</addtitle><date>2009</date><risdate>2009</risdate><volume>33</volume><issue>1</issue><spage>18</spage><epage>24</epage><pages>18-24</pages><issn>0309-1902</issn><issn>1464-522X</issn><eissn>1464-522X</eissn><abstract>Resonance sensor systems have been shown to be able to distinguish between cancerous and normal prostate tissue, in vitro. The aim of this study was to improve the accuracy of the tissue determination, to simplify the tissue classification process with computerized morphometrical analysis, to decrease the risk of human errors, and to reduce the processing time. In this article we present our newly developed computerized classification method based on image analysis. In relation to earlier resonance sensor studies we increased the number of normal prostate tissue classes into stroma, epithelial tissue, lumen and stones. The linearity between the impression depth and tissue classes was calculated using multiple linear regression (R2 = 0.68, n = 109, p &lt; 0.001) and partial least squares (R2 = 0.55, n = 109, p &lt; 0.001). Thus it can be concluded that there existed a linear relationship between the impression depth and the tissue classes. The new image analysis method was easy to handle and decreased the classification time by 80%.</abstract><cop>England</cop><pub>Informa UK Ltd</pub><pmid>19116850</pmid><doi>10.1080/03091900801945200</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0309-1902
ispartof Journal of medical engineering & technology, 2009, Vol.33 (1), p.18-24
issn 0309-1902
1464-522X
1464-522X
language eng
recordid cdi_proquest_miscellaneous_20422898
source MEDLINE; Taylor & Francis Medical Library - CRKN; Taylor & Francis Journals Complete
subjects Algorithms
classification
Diagnostic Imaging - methods
Equipment Design
fysik
Humans
Image analysis
Image Processing, Computer-Assisted - instrumentation
Image Processing, Computer-Assisted - methods
Least-Squares Analysis
Linear Models
Male
Medical engineering
Medical Engineering for Healthcare
Medicinsk teknik
Medicinsk teknik för hälsovård
Multivariate Analysis
Other technology
Partial least square
Physics
Prostate - pathology
Prostate cancer
prostate tissue
Prostatic Neoplasms - diagnosis
Reproducibility of Results
Resonance sensor
Signal Processing, Computer-Assisted
Stiffness
TECHNOLOGY
TEKNIKVETENSKAP
Övriga teknikvetenskaper
title An image analysis method for prostate tissue classification: preliminary validation with resonance sensor data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20image%20analysis%20method%20for%20prostate%20tissue%20classification:%20preliminary%20validation%20with%20resonance%20sensor%20data&rft.jtitle=Journal%20of%20medical%20engineering%20&%20technology&rft.au=Lindberg,%20P.%20L.&rft.date=2009&rft.volume=33&rft.issue=1&rft.spage=18&rft.epage=24&rft.pages=18-24&rft.issn=0309-1902&rft.eissn=1464-522X&rft_id=info:doi/10.1080/03091900801945200&rft_dat=%3Cproquest_cross%3E66779556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20422898&rft_id=info:pmid/19116850&rfr_iscdi=true