Mapping the Complete Reaction Path of a Complex Photochemical Reaction
We probe the dynamics of dissociating CS_{2} molecules across the entire reaction pathway upon excitation. Photoelectron spectroscopy measurements using laboratory-generated femtosecond extreme ultraviolet pulses monitor the competing dissociation, internal conversion, and intersystem crossing dynam...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-05, Vol.120 (18), p.183003-183003, Article 183003 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183003 |
---|---|
container_issue | 18 |
container_start_page | 183003 |
container_title | Physical review letters |
container_volume | 120 |
creator | Smith, Adam D Warne, Emily M Bellshaw, Darren Horke, Daniel A Tudorovskya, Maria Springate, Emma Jones, Alfred J H Cacho, Cephise Chapman, Richard T Kirrander, Adam Minns, Russell S |
description | We probe the dynamics of dissociating CS_{2} molecules across the entire reaction pathway upon excitation. Photoelectron spectroscopy measurements using laboratory-generated femtosecond extreme ultraviolet pulses monitor the competing dissociation, internal conversion, and intersystem crossing dynamics. Dissociation occurs either in the initially excited singlet manifold or, via intersystem crossing, in the triplet manifold. Both product channels are monitored and show that, despite being more rapid, the singlet dissociation is the minor product and that triplet state products dominate the final yield. We explain this by a consideration of accurate potential energy curves for both the singlet and triplet states. We propose that rapid internal conversion stabilizes the singlet population dynamically, allowing for singlet-triplet relaxation via intersystem crossing and the efficient formation of spin-forbidden dissociation products on longer timescales. The study demonstrates the importance of measuring the full reaction pathway for defining accurate reaction mechanisms. |
doi_str_mv | 10.1103/PhysRevLett.120.183003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2041642196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118793640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-20b14ab4587e9492575aaecb4e95bac0fa322f4a2aa4f378a41791d7db5cdd973</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4Mobv74F0bBF1-quSRtmkcZToWJQ_Q5XNPUdrRNbTLR_97K5hCf7rj7fI_jQ8gM6BUA5der6ss_24-lDeEK2DjMOKX8gEyBShVLAHFIpuMEYkWpnJAT79eUUmBpdkwmTEmZ8ERMyeIR-77u3qJQ2Wju2r6xwUbPFk2oXRetMFSRKyPc7T6jVeWCM5Vta4PNHjwjRyU23p7v6il5Xdy-zO_j5dPdw_xmGRuRZCFmNAeB-dhLq4RiiUwQrcmFVUmOhpbIGSsFMkRRcpmhAKmgkEWemKJQkp-Sy-3dfnDvG-uDbmtvbNNgZ93Ga0YFpIKBSkf04h-6dpuhG7_TDCCTiqeCjlS6pczgvB9sqfuhbnH40kD1j2n9x7QeTeut6TE4253f5K0t9rFftfwbAQ57ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118793640</pqid></control><display><type>article</type><title>Mapping the Complete Reaction Path of a Complex Photochemical Reaction</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Smith, Adam D ; Warne, Emily M ; Bellshaw, Darren ; Horke, Daniel A ; Tudorovskya, Maria ; Springate, Emma ; Jones, Alfred J H ; Cacho, Cephise ; Chapman, Richard T ; Kirrander, Adam ; Minns, Russell S</creator><creatorcontrib>Smith, Adam D ; Warne, Emily M ; Bellshaw, Darren ; Horke, Daniel A ; Tudorovskya, Maria ; Springate, Emma ; Jones, Alfred J H ; Cacho, Cephise ; Chapman, Richard T ; Kirrander, Adam ; Minns, Russell S</creatorcontrib><description>We probe the dynamics of dissociating CS_{2} molecules across the entire reaction pathway upon excitation. Photoelectron spectroscopy measurements using laboratory-generated femtosecond extreme ultraviolet pulses monitor the competing dissociation, internal conversion, and intersystem crossing dynamics. Dissociation occurs either in the initially excited singlet manifold or, via intersystem crossing, in the triplet manifold. Both product channels are monitored and show that, despite being more rapid, the singlet dissociation is the minor product and that triplet state products dominate the final yield. We explain this by a consideration of accurate potential energy curves for both the singlet and triplet states. We propose that rapid internal conversion stabilizes the singlet population dynamically, allowing for singlet-triplet relaxation via intersystem crossing and the efficient formation of spin-forbidden dissociation products on longer timescales. The study demonstrates the importance of measuring the full reaction pathway for defining accurate reaction mechanisms.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.120.183003</identifier><identifier>PMID: 29775354</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Atomic energy levels ; Excitation spectra ; Femtosecond pulses ; Internal conversion ; Manifolds ; Photochemical reactions ; Potential energy ; Reaction mechanisms</subject><ispartof>Physical review letters, 2018-05, Vol.120 (18), p.183003-183003, Article 183003</ispartof><rights>Copyright American Physical Society May 4, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-20b14ab4587e9492575aaecb4e95bac0fa322f4a2aa4f378a41791d7db5cdd973</citedby><cites>FETCH-LOGICAL-c458t-20b14ab4587e9492575aaecb4e95bac0fa322f4a2aa4f378a41791d7db5cdd973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29775354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Adam D</creatorcontrib><creatorcontrib>Warne, Emily M</creatorcontrib><creatorcontrib>Bellshaw, Darren</creatorcontrib><creatorcontrib>Horke, Daniel A</creatorcontrib><creatorcontrib>Tudorovskya, Maria</creatorcontrib><creatorcontrib>Springate, Emma</creatorcontrib><creatorcontrib>Jones, Alfred J H</creatorcontrib><creatorcontrib>Cacho, Cephise</creatorcontrib><creatorcontrib>Chapman, Richard T</creatorcontrib><creatorcontrib>Kirrander, Adam</creatorcontrib><creatorcontrib>Minns, Russell S</creatorcontrib><title>Mapping the Complete Reaction Path of a Complex Photochemical Reaction</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We probe the dynamics of dissociating CS_{2} molecules across the entire reaction pathway upon excitation. Photoelectron spectroscopy measurements using laboratory-generated femtosecond extreme ultraviolet pulses monitor the competing dissociation, internal conversion, and intersystem crossing dynamics. Dissociation occurs either in the initially excited singlet manifold or, via intersystem crossing, in the triplet manifold. Both product channels are monitored and show that, despite being more rapid, the singlet dissociation is the minor product and that triplet state products dominate the final yield. We explain this by a consideration of accurate potential energy curves for both the singlet and triplet states. We propose that rapid internal conversion stabilizes the singlet population dynamically, allowing for singlet-triplet relaxation via intersystem crossing and the efficient formation of spin-forbidden dissociation products on longer timescales. The study demonstrates the importance of measuring the full reaction pathway for defining accurate reaction mechanisms.</description><subject>Atomic energy levels</subject><subject>Excitation spectra</subject><subject>Femtosecond pulses</subject><subject>Internal conversion</subject><subject>Manifolds</subject><subject>Photochemical reactions</subject><subject>Potential energy</subject><subject>Reaction mechanisms</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkN9LwzAQx4Mobv74F0bBF1-quSRtmkcZToWJQ_Q5XNPUdrRNbTLR_97K5hCf7rj7fI_jQ8gM6BUA5der6ss_24-lDeEK2DjMOKX8gEyBShVLAHFIpuMEYkWpnJAT79eUUmBpdkwmTEmZ8ERMyeIR-77u3qJQ2Wju2r6xwUbPFk2oXRetMFSRKyPc7T6jVeWCM5Vta4PNHjwjRyU23p7v6il5Xdy-zO_j5dPdw_xmGRuRZCFmNAeB-dhLq4RiiUwQrcmFVUmOhpbIGSsFMkRRcpmhAKmgkEWemKJQkp-Sy-3dfnDvG-uDbmtvbNNgZ93Ga0YFpIKBSkf04h-6dpuhG7_TDCCTiqeCjlS6pczgvB9sqfuhbnH40kD1j2n9x7QeTeut6TE4253f5K0t9rFftfwbAQ57ww</recordid><startdate>20180504</startdate><enddate>20180504</enddate><creator>Smith, Adam D</creator><creator>Warne, Emily M</creator><creator>Bellshaw, Darren</creator><creator>Horke, Daniel A</creator><creator>Tudorovskya, Maria</creator><creator>Springate, Emma</creator><creator>Jones, Alfred J H</creator><creator>Cacho, Cephise</creator><creator>Chapman, Richard T</creator><creator>Kirrander, Adam</creator><creator>Minns, Russell S</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20180504</creationdate><title>Mapping the Complete Reaction Path of a Complex Photochemical Reaction</title><author>Smith, Adam D ; Warne, Emily M ; Bellshaw, Darren ; Horke, Daniel A ; Tudorovskya, Maria ; Springate, Emma ; Jones, Alfred J H ; Cacho, Cephise ; Chapman, Richard T ; Kirrander, Adam ; Minns, Russell S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-20b14ab4587e9492575aaecb4e95bac0fa322f4a2aa4f378a41791d7db5cdd973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic energy levels</topic><topic>Excitation spectra</topic><topic>Femtosecond pulses</topic><topic>Internal conversion</topic><topic>Manifolds</topic><topic>Photochemical reactions</topic><topic>Potential energy</topic><topic>Reaction mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Adam D</creatorcontrib><creatorcontrib>Warne, Emily M</creatorcontrib><creatorcontrib>Bellshaw, Darren</creatorcontrib><creatorcontrib>Horke, Daniel A</creatorcontrib><creatorcontrib>Tudorovskya, Maria</creatorcontrib><creatorcontrib>Springate, Emma</creatorcontrib><creatorcontrib>Jones, Alfred J H</creatorcontrib><creatorcontrib>Cacho, Cephise</creatorcontrib><creatorcontrib>Chapman, Richard T</creatorcontrib><creatorcontrib>Kirrander, Adam</creatorcontrib><creatorcontrib>Minns, Russell S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Adam D</au><au>Warne, Emily M</au><au>Bellshaw, Darren</au><au>Horke, Daniel A</au><au>Tudorovskya, Maria</au><au>Springate, Emma</au><au>Jones, Alfred J H</au><au>Cacho, Cephise</au><au>Chapman, Richard T</au><au>Kirrander, Adam</au><au>Minns, Russell S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the Complete Reaction Path of a Complex Photochemical Reaction</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-05-04</date><risdate>2018</risdate><volume>120</volume><issue>18</issue><spage>183003</spage><epage>183003</epage><pages>183003-183003</pages><artnum>183003</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We probe the dynamics of dissociating CS_{2} molecules across the entire reaction pathway upon excitation. Photoelectron spectroscopy measurements using laboratory-generated femtosecond extreme ultraviolet pulses monitor the competing dissociation, internal conversion, and intersystem crossing dynamics. Dissociation occurs either in the initially excited singlet manifold or, via intersystem crossing, in the triplet manifold. Both product channels are monitored and show that, despite being more rapid, the singlet dissociation is the minor product and that triplet state products dominate the final yield. We explain this by a consideration of accurate potential energy curves for both the singlet and triplet states. We propose that rapid internal conversion stabilizes the singlet population dynamically, allowing for singlet-triplet relaxation via intersystem crossing and the efficient formation of spin-forbidden dissociation products on longer timescales. The study demonstrates the importance of measuring the full reaction pathway for defining accurate reaction mechanisms.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>29775354</pmid><doi>10.1103/PhysRevLett.120.183003</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2018-05, Vol.120 (18), p.183003-183003, Article 183003 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2041642196 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Atomic energy levels Excitation spectra Femtosecond pulses Internal conversion Manifolds Photochemical reactions Potential energy Reaction mechanisms |
title | Mapping the Complete Reaction Path of a Complex Photochemical Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20Complete%20Reaction%20Path%20of%20a%20Complex%20Photochemical%20Reaction&rft.jtitle=Physical%20review%20letters&rft.au=Smith,%20Adam%20D&rft.date=2018-05-04&rft.volume=120&rft.issue=18&rft.spage=183003&rft.epage=183003&rft.pages=183003-183003&rft.artnum=183003&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.120.183003&rft_dat=%3Cproquest_cross%3E2118793640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118793640&rft_id=info:pmid/29775354&rfr_iscdi=true |