3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals

Thermoelectric technology enables the harvest of waste heat and its direct conversion into electricity. The conversion efficiency is determined by the materials figure of merit Here we show a maximum of ~2.8 ± 0.5 at 773 kelvin in n-type tin selenide (SnSe) crystals out of plane. The thermal conduct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2018-05, Vol.360 (6390), p.778-783
Hauptverfasser: Chang, Cheng, Wu, Minghui, He, Dongsheng, Pei, Yanling, Wu, Chao-Feng, Wu, Xuefeng, Yu, Hulei, Zhu, Fangyuan, Wang, Kedong, Chen, Yue, Huang, Li, Li, Jing-Feng, He, Jiaqing, Zhao, Li-Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 783
container_issue 6390
container_start_page 778
container_title Science (American Association for the Advancement of Science)
container_volume 360
creator Chang, Cheng
Wu, Minghui
He, Dongsheng
Pei, Yanling
Wu, Chao-Feng
Wu, Xuefeng
Yu, Hulei
Zhu, Fangyuan
Wang, Kedong
Chen, Yue
Huang, Li
Li, Jing-Feng
He, Jiaqing
Zhao, Li-Dong
description Thermoelectric technology enables the harvest of waste heat and its direct conversion into electricity. The conversion efficiency is determined by the materials figure of merit Here we show a maximum of ~2.8 ± 0.5 at 773 kelvin in n-type tin selenide (SnSe) crystals out of plane. The thermal conductivity in layered SnSe crystals is the lowest in the out-of-plane direction [two-dimensional (2D) phonon transport]. We doped SnSe with bromine to make n-type SnSe crystals with the overlapping interlayer charge density (3D charge transport). A continuous phase transition increases the symmetry and diverges two converged conduction bands. These two factors improve carrier mobility, while preserving a large Seebeck coefficient. Our findings can be applied in 2D layered materials and provide a new strategy to enhance out-of-plane electrical transport properties without degrading thermal properties.
doi_str_mv 10.1126/science.aaq1479
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2041631204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2040781610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-320a85662f5744770550f42ad8b603813136f6b8a0f50e2eb60f47f943d95b03</originalsourceid><addsrcrecordid>eNpdkD1rwzAQhkVpadK0c7ci6NLFyUmyJXssSb8g0CGZshjZlmIHR3Ike8i_r03cDp1euHvu5XgQeiQwJ4Tyhc8rZXI1l_JEQpFcoSmBJAoSCuwaTQEYD2IQ0QTdeX8A6HcJu0UTmgjBRBhP0Y6tcF5Kt1dYmgLTFW5Ka6zBrZPGN9a1HtdKFpXZ49bistqX2HZtYHXQ1NIovNviymATtOdG4Y3ZKJy7s29l7e_Rje5DPYw5Q9v3t-3yM1h_f3wtX9dBzjhvA0ZBxhHnVEciDIWAKAIdUlnEGQcWE0YY1zyLJegIFFX9VIdCJyErkigDNkMvl9rG2VOnfJseK5-revjOdj6lEBLOSB89-vwPPdjOmf65gQIRE06GwsWFyp313imdNq46SndOCaSD9XS0no7W-4unsbfLjqr44381sx9minzz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040781610</pqid></control><display><type>article</type><title>3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Chang, Cheng ; Wu, Minghui ; He, Dongsheng ; Pei, Yanling ; Wu, Chao-Feng ; Wu, Xuefeng ; Yu, Hulei ; Zhu, Fangyuan ; Wang, Kedong ; Chen, Yue ; Huang, Li ; Li, Jing-Feng ; He, Jiaqing ; Zhao, Li-Dong</creator><creatorcontrib>Chang, Cheng ; Wu, Minghui ; He, Dongsheng ; Pei, Yanling ; Wu, Chao-Feng ; Wu, Xuefeng ; Yu, Hulei ; Zhu, Fangyuan ; Wang, Kedong ; Chen, Yue ; Huang, Li ; Li, Jing-Feng ; He, Jiaqing ; Zhao, Li-Dong</creatorcontrib><description>Thermoelectric technology enables the harvest of waste heat and its direct conversion into electricity. The conversion efficiency is determined by the materials figure of merit Here we show a maximum of ~2.8 ± 0.5 at 773 kelvin in n-type tin selenide (SnSe) crystals out of plane. The thermal conductivity in layered SnSe crystals is the lowest in the out-of-plane direction [two-dimensional (2D) phonon transport]. We doped SnSe with bromine to make n-type SnSe crystals with the overlapping interlayer charge density (3D charge transport). A continuous phase transition increases the symmetry and diverges two converged conduction bands. These two factors improve carrier mobility, while preserving a large Seebeck coefficient. Our findings can be applied in 2D layered materials and provide a new strategy to enhance out-of-plane electrical transport properties without degrading thermal properties.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaq1479</identifier><identifier>PMID: 29773748</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Bromine ; Carrier mobility ; Charge density ; Charge transport ; Conduction ; Conduction bands ; Crystals ; Current carriers ; Direct conversion ; Electrical resistivity ; Electricity ; Figure of merit ; Heat conductivity ; Heat transfer ; Interlayers ; Layered materials ; Phase transitions ; Seebeck effect ; Selenide ; Thermal conductivity ; Thermal properties ; Thermodynamic properties ; Thermoelectric materials ; Tin ; Tin selenide</subject><ispartof>Science (American Association for the Advancement of Science), 2018-05, Vol.360 (6390), p.778-783</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-320a85662f5744770550f42ad8b603813136f6b8a0f50e2eb60f47f943d95b03</citedby><cites>FETCH-LOGICAL-c366t-320a85662f5744770550f42ad8b603813136f6b8a0f50e2eb60f47f943d95b03</cites><orcidid>0000-0002-9515-4277 ; 0000-0002-0185-0512 ; 0000-0002-8689-6586 ; 0000-0003-1247-4345 ; 0000-0003-3954-6003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29773748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Cheng</creatorcontrib><creatorcontrib>Wu, Minghui</creatorcontrib><creatorcontrib>He, Dongsheng</creatorcontrib><creatorcontrib>Pei, Yanling</creatorcontrib><creatorcontrib>Wu, Chao-Feng</creatorcontrib><creatorcontrib>Wu, Xuefeng</creatorcontrib><creatorcontrib>Yu, Hulei</creatorcontrib><creatorcontrib>Zhu, Fangyuan</creatorcontrib><creatorcontrib>Wang, Kedong</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Li, Jing-Feng</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><creatorcontrib>Zhao, Li-Dong</creatorcontrib><title>3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Thermoelectric technology enables the harvest of waste heat and its direct conversion into electricity. The conversion efficiency is determined by the materials figure of merit Here we show a maximum of ~2.8 ± 0.5 at 773 kelvin in n-type tin selenide (SnSe) crystals out of plane. The thermal conductivity in layered SnSe crystals is the lowest in the out-of-plane direction [two-dimensional (2D) phonon transport]. We doped SnSe with bromine to make n-type SnSe crystals with the overlapping interlayer charge density (3D charge transport). A continuous phase transition increases the symmetry and diverges two converged conduction bands. These two factors improve carrier mobility, while preserving a large Seebeck coefficient. Our findings can be applied in 2D layered materials and provide a new strategy to enhance out-of-plane electrical transport properties without degrading thermal properties.</description><subject>Bromine</subject><subject>Carrier mobility</subject><subject>Charge density</subject><subject>Charge transport</subject><subject>Conduction</subject><subject>Conduction bands</subject><subject>Crystals</subject><subject>Current carriers</subject><subject>Direct conversion</subject><subject>Electrical resistivity</subject><subject>Electricity</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Interlayers</subject><subject>Layered materials</subject><subject>Phase transitions</subject><subject>Seebeck effect</subject><subject>Selenide</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thermoelectric materials</subject><subject>Tin</subject><subject>Tin selenide</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkD1rwzAQhkVpadK0c7ci6NLFyUmyJXssSb8g0CGZshjZlmIHR3Ike8i_r03cDp1euHvu5XgQeiQwJ4Tyhc8rZXI1l_JEQpFcoSmBJAoSCuwaTQEYD2IQ0QTdeX8A6HcJu0UTmgjBRBhP0Y6tcF5Kt1dYmgLTFW5Ka6zBrZPGN9a1HtdKFpXZ49bistqX2HZtYHXQ1NIovNviymATtOdG4Y3ZKJy7s29l7e_Rje5DPYw5Q9v3t-3yM1h_f3wtX9dBzjhvA0ZBxhHnVEciDIWAKAIdUlnEGQcWE0YY1zyLJegIFFX9VIdCJyErkigDNkMvl9rG2VOnfJseK5-revjOdj6lEBLOSB89-vwPPdjOmf65gQIRE06GwsWFyp313imdNq46SndOCaSD9XS0no7W-4unsbfLjqr44381sx9minzz</recordid><startdate>20180518</startdate><enddate>20180518</enddate><creator>Chang, Cheng</creator><creator>Wu, Minghui</creator><creator>He, Dongsheng</creator><creator>Pei, Yanling</creator><creator>Wu, Chao-Feng</creator><creator>Wu, Xuefeng</creator><creator>Yu, Hulei</creator><creator>Zhu, Fangyuan</creator><creator>Wang, Kedong</creator><creator>Chen, Yue</creator><creator>Huang, Li</creator><creator>Li, Jing-Feng</creator><creator>He, Jiaqing</creator><creator>Zhao, Li-Dong</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9515-4277</orcidid><orcidid>https://orcid.org/0000-0002-0185-0512</orcidid><orcidid>https://orcid.org/0000-0002-8689-6586</orcidid><orcidid>https://orcid.org/0000-0003-1247-4345</orcidid><orcidid>https://orcid.org/0000-0003-3954-6003</orcidid></search><sort><creationdate>20180518</creationdate><title>3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals</title><author>Chang, Cheng ; Wu, Minghui ; He, Dongsheng ; Pei, Yanling ; Wu, Chao-Feng ; Wu, Xuefeng ; Yu, Hulei ; Zhu, Fangyuan ; Wang, Kedong ; Chen, Yue ; Huang, Li ; Li, Jing-Feng ; He, Jiaqing ; Zhao, Li-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-320a85662f5744770550f42ad8b603813136f6b8a0f50e2eb60f47f943d95b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bromine</topic><topic>Carrier mobility</topic><topic>Charge density</topic><topic>Charge transport</topic><topic>Conduction</topic><topic>Conduction bands</topic><topic>Crystals</topic><topic>Current carriers</topic><topic>Direct conversion</topic><topic>Electrical resistivity</topic><topic>Electricity</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Interlayers</topic><topic>Layered materials</topic><topic>Phase transitions</topic><topic>Seebeck effect</topic><topic>Selenide</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thermoelectric materials</topic><topic>Tin</topic><topic>Tin selenide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Cheng</creatorcontrib><creatorcontrib>Wu, Minghui</creatorcontrib><creatorcontrib>He, Dongsheng</creatorcontrib><creatorcontrib>Pei, Yanling</creatorcontrib><creatorcontrib>Wu, Chao-Feng</creatorcontrib><creatorcontrib>Wu, Xuefeng</creatorcontrib><creatorcontrib>Yu, Hulei</creatorcontrib><creatorcontrib>Zhu, Fangyuan</creatorcontrib><creatorcontrib>Wang, Kedong</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Li, Jing-Feng</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><creatorcontrib>Zhao, Li-Dong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Cheng</au><au>Wu, Minghui</au><au>He, Dongsheng</au><au>Pei, Yanling</au><au>Wu, Chao-Feng</au><au>Wu, Xuefeng</au><au>Yu, Hulei</au><au>Zhu, Fangyuan</au><au>Wang, Kedong</au><au>Chen, Yue</au><au>Huang, Li</au><au>Li, Jing-Feng</au><au>He, Jiaqing</au><au>Zhao, Li-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-05-18</date><risdate>2018</risdate><volume>360</volume><issue>6390</issue><spage>778</spage><epage>783</epage><pages>778-783</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Thermoelectric technology enables the harvest of waste heat and its direct conversion into electricity. The conversion efficiency is determined by the materials figure of merit Here we show a maximum of ~2.8 ± 0.5 at 773 kelvin in n-type tin selenide (SnSe) crystals out of plane. The thermal conductivity in layered SnSe crystals is the lowest in the out-of-plane direction [two-dimensional (2D) phonon transport]. We doped SnSe with bromine to make n-type SnSe crystals with the overlapping interlayer charge density (3D charge transport). A continuous phase transition increases the symmetry and diverges two converged conduction bands. These two factors improve carrier mobility, while preserving a large Seebeck coefficient. Our findings can be applied in 2D layered materials and provide a new strategy to enhance out-of-plane electrical transport properties without degrading thermal properties.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>29773748</pmid><doi>10.1126/science.aaq1479</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9515-4277</orcidid><orcidid>https://orcid.org/0000-0002-0185-0512</orcidid><orcidid>https://orcid.org/0000-0002-8689-6586</orcidid><orcidid>https://orcid.org/0000-0003-1247-4345</orcidid><orcidid>https://orcid.org/0000-0003-3954-6003</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2018-05, Vol.360 (6390), p.778-783
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2041631204
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Bromine
Carrier mobility
Charge density
Charge transport
Conduction
Conduction bands
Crystals
Current carriers
Direct conversion
Electrical resistivity
Electricity
Figure of merit
Heat conductivity
Heat transfer
Interlayers
Layered materials
Phase transitions
Seebeck effect
Selenide
Thermal conductivity
Thermal properties
Thermodynamic properties
Thermoelectric materials
Tin
Tin selenide
title 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20charge%20and%202D%20phonon%20transports%20leading%20to%20high%20out-of-plane%20ZT%20in%20n-type%20SnSe%20crystals&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Chang,%20Cheng&rft.date=2018-05-18&rft.volume=360&rft.issue=6390&rft.spage=778&rft.epage=783&rft.pages=778-783&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaq1479&rft_dat=%3Cproquest_cross%3E2040781610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040781610&rft_id=info:pmid/29773748&rfr_iscdi=true