Energy transport by nonlinear internal waves
Winter stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture disturbances that exhibit properties of internal solitary...
Gespeichert in:
Veröffentlicht in: | Journal of physical oceanography 2007-07, Vol.37 (7), p.1968-1988 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1988 |
---|---|
container_issue | 7 |
container_start_page | 1968 |
container_title | Journal of physical oceanography |
container_volume | 37 |
creator | MOUM, J. N KLYMAK, J. M NASH, J. D PERLIN, A SMYTH, W. D |
description | Winter stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture disturbances that exhibit properties of internal solitary waves, bores, and gravity currents. Wavelike pulses are highly turbulent (instantaneous bed stresses are 1 N m−2), resuspending bottom sediments into the water column and raising them 30+ m above the seafloor. The wave cross-shelf transport of fluid often counters the time-averaged Ekman transport in the bottom boundary layer. In the nonlinear internal waves that were observed, the kinetic energy is roughly equal to the available potential energy and is O(0.1) megajoules per meter of coastline. The energy transported by these waves includes a nonlinear advection term 〈uE〉 that is negligible in linear internal waves. Unlike linear internal waves, the pressure–velocity energy flux 〈up〉 includes important contributions from nonhydrostatic effects and surface displacement. It is found that, statistically, 〈uE〉 ≃ 2〈up〉. Vertical profiles through these waves of elevation indicate that up(z) is more important in transporting energy near the seafloor while uE(z) dominates farther from the bottom. With the wave speed c estimated from weakly nonlinear wave theory, it is verified experimentally that the total energy transported by the waves is 〈up〉 + 〈uE〉 ≃ c〈E〉. The high but intermittent energy flux by the waves is, in an averaged sense, O(100) watts per meter of coastline. This is similar to independent estimates of the shoreward energy flux in the semidiurnal internal tide at the shelf break. |
doi_str_mv | 10.1175/JPO3094.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20405796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1319093641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-6f6b34330dfdfca4c02ff32b37f950271bab120aa2b7f6220985bd5702b7ecf53</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtbqwX-wCAqCWyeTTdIcpdQvCvWg55CkiWzZZmuyVfrv3dKC4GkYeOZleAm5pDCiVPL717c5A1WN6BEZUI5QQjXmx2QAgFgyIeGUnOW8BABBUQ3I3TT69LktumRiXrepK-y2iG1s6uhNKurY-RRNU_yYb5_PyUkwTfYXhzkkH4_T98lzOZs_vUweZqVjCrtSBGFZxRgswiI4UznAEBhaJoPigJJaYymCMWhlEIigxtwuuIR-9y5wNiQ3-9x1ar82Pnd6VWfnm8ZE326yRqiASyV6ePUPLtvN7t_eIFOMMgk9ut0jl9qckw96neqVSVtNQe9K04fSNO3t9SHQZGea0Lfi6vx3MFaSoRDsF5EsakA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223931370</pqid></control><display><type>article</type><title>Energy transport by nonlinear internal waves</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MOUM, J. N ; KLYMAK, J. M ; NASH, J. D ; PERLIN, A ; SMYTH, W. D</creator><creatorcontrib>MOUM, J. N ; KLYMAK, J. M ; NASH, J. D ; PERLIN, A ; SMYTH, W. D</creatorcontrib><description>Winter stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture disturbances that exhibit properties of internal solitary waves, bores, and gravity currents. Wavelike pulses are highly turbulent (instantaneous bed stresses are 1 N m−2), resuspending bottom sediments into the water column and raising them 30+ m above the seafloor. The wave cross-shelf transport of fluid often counters the time-averaged Ekman transport in the bottom boundary layer. In the nonlinear internal waves that were observed, the kinetic energy is roughly equal to the available potential energy and is O(0.1) megajoules per meter of coastline. The energy transported by these waves includes a nonlinear advection term 〈uE〉 that is negligible in linear internal waves. Unlike linear internal waves, the pressure–velocity energy flux 〈up〉 includes important contributions from nonhydrostatic effects and surface displacement. It is found that, statistically, 〈uE〉 ≃ 2〈up〉. Vertical profiles through these waves of elevation indicate that up(z) is more important in transporting energy near the seafloor while uE(z) dominates farther from the bottom. With the wave speed c estimated from weakly nonlinear wave theory, it is verified experimentally that the total energy transported by the waves is 〈up〉 + 〈uE〉 ≃ c〈E〉. The high but intermittent energy flux by the waves is, in an averaged sense, O(100) watts per meter of coastline. This is similar to independent estimates of the shoreward energy flux in the semidiurnal internal tide at the shelf break.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/JPO3094.1</identifier><identifier>CODEN: JPYOBT</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Bottom sediments ; Boundary layers ; Coastal oceanography, estuaries. Regional oceanography ; Continental shelves ; Contributions ; Diurnal variations ; Earth, ocean, space ; Energy dissipation ; Exact sciences and technology ; External geophysics ; Fluctuations ; Internal waves ; Kinetic energy ; Marine ; Ocean floor ; Physics of the oceans ; Potential energy ; Solitary waves ; Velocity ; Water column ; Winter</subject><ispartof>Journal of physical oceanography, 2007-07, Vol.37 (7), p.1968-1988</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Meteorological Society Jul 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-6f6b34330dfdfca4c02ff32b37f950271bab120aa2b7f6220985bd5702b7ecf53</citedby><cites>FETCH-LOGICAL-c392t-6f6b34330dfdfca4c02ff32b37f950271bab120aa2b7f6220985bd5702b7ecf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18973266$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MOUM, J. N</creatorcontrib><creatorcontrib>KLYMAK, J. M</creatorcontrib><creatorcontrib>NASH, J. D</creatorcontrib><creatorcontrib>PERLIN, A</creatorcontrib><creatorcontrib>SMYTH, W. D</creatorcontrib><title>Energy transport by nonlinear internal waves</title><title>Journal of physical oceanography</title><description>Winter stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture disturbances that exhibit properties of internal solitary waves, bores, and gravity currents. Wavelike pulses are highly turbulent (instantaneous bed stresses are 1 N m−2), resuspending bottom sediments into the water column and raising them 30+ m above the seafloor. The wave cross-shelf transport of fluid often counters the time-averaged Ekman transport in the bottom boundary layer. In the nonlinear internal waves that were observed, the kinetic energy is roughly equal to the available potential energy and is O(0.1) megajoules per meter of coastline. The energy transported by these waves includes a nonlinear advection term 〈uE〉 that is negligible in linear internal waves. Unlike linear internal waves, the pressure–velocity energy flux 〈up〉 includes important contributions from nonhydrostatic effects and surface displacement. It is found that, statistically, 〈uE〉 ≃ 2〈up〉. Vertical profiles through these waves of elevation indicate that up(z) is more important in transporting energy near the seafloor while uE(z) dominates farther from the bottom. With the wave speed c estimated from weakly nonlinear wave theory, it is verified experimentally that the total energy transported by the waves is 〈up〉 + 〈uE〉 ≃ c〈E〉. The high but intermittent energy flux by the waves is, in an averaged sense, O(100) watts per meter of coastline. This is similar to independent estimates of the shoreward energy flux in the semidiurnal internal tide at the shelf break.</description><subject>Bottom sediments</subject><subject>Boundary layers</subject><subject>Coastal oceanography, estuaries. Regional oceanography</subject><subject>Continental shelves</subject><subject>Contributions</subject><subject>Diurnal variations</subject><subject>Earth, ocean, space</subject><subject>Energy dissipation</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluctuations</subject><subject>Internal waves</subject><subject>Kinetic energy</subject><subject>Marine</subject><subject>Ocean floor</subject><subject>Physics of the oceans</subject><subject>Potential energy</subject><subject>Solitary waves</subject><subject>Velocity</subject><subject>Water column</subject><subject>Winter</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0E1LAzEQBuAgCtbqwX-wCAqCWyeTTdIcpdQvCvWg55CkiWzZZmuyVfrv3dKC4GkYeOZleAm5pDCiVPL717c5A1WN6BEZUI5QQjXmx2QAgFgyIeGUnOW8BABBUQ3I3TT69LktumRiXrepK-y2iG1s6uhNKurY-RRNU_yYb5_PyUkwTfYXhzkkH4_T98lzOZs_vUweZqVjCrtSBGFZxRgswiI4UznAEBhaJoPigJJaYymCMWhlEIigxtwuuIR-9y5wNiQ3-9x1ar82Pnd6VWfnm8ZE326yRqiASyV6ePUPLtvN7t_eIFOMMgk9ut0jl9qckw96neqVSVtNQe9K04fSNO3t9SHQZGea0Lfi6vx3MFaSoRDsF5EsakA</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>MOUM, J. N</creator><creator>KLYMAK, J. M</creator><creator>NASH, J. D</creator><creator>PERLIN, A</creator><creator>SMYTH, W. D</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20070701</creationdate><title>Energy transport by nonlinear internal waves</title><author>MOUM, J. N ; KLYMAK, J. M ; NASH, J. D ; PERLIN, A ; SMYTH, W. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-6f6b34330dfdfca4c02ff32b37f950271bab120aa2b7f6220985bd5702b7ecf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bottom sediments</topic><topic>Boundary layers</topic><topic>Coastal oceanography, estuaries. Regional oceanography</topic><topic>Continental shelves</topic><topic>Contributions</topic><topic>Diurnal variations</topic><topic>Earth, ocean, space</topic><topic>Energy dissipation</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluctuations</topic><topic>Internal waves</topic><topic>Kinetic energy</topic><topic>Marine</topic><topic>Ocean floor</topic><topic>Physics of the oceans</topic><topic>Potential energy</topic><topic>Solitary waves</topic><topic>Velocity</topic><topic>Water column</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MOUM, J. N</creatorcontrib><creatorcontrib>KLYMAK, J. M</creatorcontrib><creatorcontrib>NASH, J. D</creatorcontrib><creatorcontrib>PERLIN, A</creatorcontrib><creatorcontrib>SMYTH, W. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MOUM, J. N</au><au>KLYMAK, J. M</au><au>NASH, J. D</au><au>PERLIN, A</au><au>SMYTH, W. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy transport by nonlinear internal waves</atitle><jtitle>Journal of physical oceanography</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>37</volume><issue>7</issue><spage>1968</spage><epage>1988</epage><pages>1968-1988</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><coden>JPYOBT</coden><abstract>Winter stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture disturbances that exhibit properties of internal solitary waves, bores, and gravity currents. Wavelike pulses are highly turbulent (instantaneous bed stresses are 1 N m−2), resuspending bottom sediments into the water column and raising them 30+ m above the seafloor. The wave cross-shelf transport of fluid often counters the time-averaged Ekman transport in the bottom boundary layer. In the nonlinear internal waves that were observed, the kinetic energy is roughly equal to the available potential energy and is O(0.1) megajoules per meter of coastline. The energy transported by these waves includes a nonlinear advection term 〈uE〉 that is negligible in linear internal waves. Unlike linear internal waves, the pressure–velocity energy flux 〈up〉 includes important contributions from nonhydrostatic effects and surface displacement. It is found that, statistically, 〈uE〉 ≃ 2〈up〉. Vertical profiles through these waves of elevation indicate that up(z) is more important in transporting energy near the seafloor while uE(z) dominates farther from the bottom. With the wave speed c estimated from weakly nonlinear wave theory, it is verified experimentally that the total energy transported by the waves is 〈up〉 + 〈uE〉 ≃ c〈E〉. The high but intermittent energy flux by the waves is, in an averaged sense, O(100) watts per meter of coastline. This is similar to independent estimates of the shoreward energy flux in the semidiurnal internal tide at the shelf break.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/JPO3094.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3670 |
ispartof | Journal of physical oceanography, 2007-07, Vol.37 (7), p.1968-1988 |
issn | 0022-3670 1520-0485 |
language | eng |
recordid | cdi_proquest_miscellaneous_20405796 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals |
subjects | Bottom sediments Boundary layers Coastal oceanography, estuaries. Regional oceanography Continental shelves Contributions Diurnal variations Earth, ocean, space Energy dissipation Exact sciences and technology External geophysics Fluctuations Internal waves Kinetic energy Marine Ocean floor Physics of the oceans Potential energy Solitary waves Velocity Water column Winter |
title | Energy transport by nonlinear internal waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20transport%20by%20nonlinear%20internal%20waves&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=MOUM,%20J.%20N&rft.date=2007-07-01&rft.volume=37&rft.issue=7&rft.spage=1968&rft.epage=1988&rft.pages=1968-1988&rft.issn=0022-3670&rft.eissn=1520-0485&rft.coden=JPYOBT&rft_id=info:doi/10.1175/JPO3094.1&rft_dat=%3Cproquest_cross%3E1319093641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223931370&rft_id=info:pmid/&rfr_iscdi=true |