Energy transport by nonlinear internal waves

Winter stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture disturbances that exhibit properties of internal solitary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical oceanography 2007-07, Vol.37 (7), p.1968-1988
Hauptverfasser: MOUM, J. N, KLYMAK, J. M, NASH, J. D, PERLIN, A, SMYTH, W. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1988
container_issue 7
container_start_page 1968
container_title Journal of physical oceanography
container_volume 37
creator MOUM, J. N
KLYMAK, J. M
NASH, J. D
PERLIN, A
SMYTH, W. D
description Winter stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture disturbances that exhibit properties of internal solitary waves, bores, and gravity currents. Wavelike pulses are highly turbulent (instantaneous bed stresses are 1 N m−2), resuspending bottom sediments into the water column and raising them 30+ m above the seafloor. The wave cross-shelf transport of fluid often counters the time-averaged Ekman transport in the bottom boundary layer. In the nonlinear internal waves that were observed, the kinetic energy is roughly equal to the available potential energy and is O(0.1) megajoules per meter of coastline. The energy transported by these waves includes a nonlinear advection term 〈uE〉 that is negligible in linear internal waves. Unlike linear internal waves, the pressure–velocity energy flux 〈up〉 includes important contributions from nonhydrostatic effects and surface displacement. It is found that, statistically, 〈uE〉 ≃ 2〈up〉. Vertical profiles through these waves of elevation indicate that up(z) is more important in transporting energy near the seafloor while uE(z) dominates farther from the bottom. With the wave speed c estimated from weakly nonlinear wave theory, it is verified experimentally that the total energy transported by the waves is 〈up〉 + 〈uE〉 ≃ c〈E〉. The high but intermittent energy flux by the waves is, in an averaged sense, O(100) watts per meter of coastline. This is similar to independent estimates of the shoreward energy flux in the semidiurnal internal tide at the shelf break.
doi_str_mv 10.1175/JPO3094.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20405796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1319093641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-6f6b34330dfdfca4c02ff32b37f950271bab120aa2b7f6220985bd5702b7ecf53</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtbqwX-wCAqCWyeTTdIcpdQvCvWg55CkiWzZZmuyVfrv3dKC4GkYeOZleAm5pDCiVPL717c5A1WN6BEZUI5QQjXmx2QAgFgyIeGUnOW8BABBUQ3I3TT69LktumRiXrepK-y2iG1s6uhNKurY-RRNU_yYb5_PyUkwTfYXhzkkH4_T98lzOZs_vUweZqVjCrtSBGFZxRgswiI4UznAEBhaJoPigJJaYymCMWhlEIigxtwuuIR-9y5wNiQ3-9x1ar82Pnd6VWfnm8ZE326yRqiASyV6ePUPLtvN7t_eIFOMMgk9ut0jl9qckw96neqVSVtNQe9K04fSNO3t9SHQZGea0Lfi6vx3MFaSoRDsF5EsakA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223931370</pqid></control><display><type>article</type><title>Energy transport by nonlinear internal waves</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MOUM, J. N ; KLYMAK, J. M ; NASH, J. D ; PERLIN, A ; SMYTH, W. D</creator><creatorcontrib>MOUM, J. N ; KLYMAK, J. M ; NASH, J. D ; PERLIN, A ; SMYTH, W. D</creatorcontrib><description>Winter stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture disturbances that exhibit properties of internal solitary waves, bores, and gravity currents. Wavelike pulses are highly turbulent (instantaneous bed stresses are 1 N m−2), resuspending bottom sediments into the water column and raising them 30+ m above the seafloor. The wave cross-shelf transport of fluid often counters the time-averaged Ekman transport in the bottom boundary layer. In the nonlinear internal waves that were observed, the kinetic energy is roughly equal to the available potential energy and is O(0.1) megajoules per meter of coastline. The energy transported by these waves includes a nonlinear advection term 〈uE〉 that is negligible in linear internal waves. Unlike linear internal waves, the pressure–velocity energy flux 〈up〉 includes important contributions from nonhydrostatic effects and surface displacement. It is found that, statistically, 〈uE〉 ≃ 2〈up〉. Vertical profiles through these waves of elevation indicate that up(z) is more important in transporting energy near the seafloor while uE(z) dominates farther from the bottom. With the wave speed c estimated from weakly nonlinear wave theory, it is verified experimentally that the total energy transported by the waves is 〈up〉 + 〈uE〉 ≃ c〈E〉. The high but intermittent energy flux by the waves is, in an averaged sense, O(100) watts per meter of coastline. This is similar to independent estimates of the shoreward energy flux in the semidiurnal internal tide at the shelf break.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/JPO3094.1</identifier><identifier>CODEN: JPYOBT</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Bottom sediments ; Boundary layers ; Coastal oceanography, estuaries. Regional oceanography ; Continental shelves ; Contributions ; Diurnal variations ; Earth, ocean, space ; Energy dissipation ; Exact sciences and technology ; External geophysics ; Fluctuations ; Internal waves ; Kinetic energy ; Marine ; Ocean floor ; Physics of the oceans ; Potential energy ; Solitary waves ; Velocity ; Water column ; Winter</subject><ispartof>Journal of physical oceanography, 2007-07, Vol.37 (7), p.1968-1988</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Meteorological Society Jul 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-6f6b34330dfdfca4c02ff32b37f950271bab120aa2b7f6220985bd5702b7ecf53</citedby><cites>FETCH-LOGICAL-c392t-6f6b34330dfdfca4c02ff32b37f950271bab120aa2b7f6220985bd5702b7ecf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18973266$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MOUM, J. N</creatorcontrib><creatorcontrib>KLYMAK, J. M</creatorcontrib><creatorcontrib>NASH, J. D</creatorcontrib><creatorcontrib>PERLIN, A</creatorcontrib><creatorcontrib>SMYTH, W. D</creatorcontrib><title>Energy transport by nonlinear internal waves</title><title>Journal of physical oceanography</title><description>Winter stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture disturbances that exhibit properties of internal solitary waves, bores, and gravity currents. Wavelike pulses are highly turbulent (instantaneous bed stresses are 1 N m−2), resuspending bottom sediments into the water column and raising them 30+ m above the seafloor. The wave cross-shelf transport of fluid often counters the time-averaged Ekman transport in the bottom boundary layer. In the nonlinear internal waves that were observed, the kinetic energy is roughly equal to the available potential energy and is O(0.1) megajoules per meter of coastline. The energy transported by these waves includes a nonlinear advection term 〈uE〉 that is negligible in linear internal waves. Unlike linear internal waves, the pressure–velocity energy flux 〈up〉 includes important contributions from nonhydrostatic effects and surface displacement. It is found that, statistically, 〈uE〉 ≃ 2〈up〉. Vertical profiles through these waves of elevation indicate that up(z) is more important in transporting energy near the seafloor while uE(z) dominates farther from the bottom. With the wave speed c estimated from weakly nonlinear wave theory, it is verified experimentally that the total energy transported by the waves is 〈up〉 + 〈uE〉 ≃ c〈E〉. The high but intermittent energy flux by the waves is, in an averaged sense, O(100) watts per meter of coastline. This is similar to independent estimates of the shoreward energy flux in the semidiurnal internal tide at the shelf break.</description><subject>Bottom sediments</subject><subject>Boundary layers</subject><subject>Coastal oceanography, estuaries. Regional oceanography</subject><subject>Continental shelves</subject><subject>Contributions</subject><subject>Diurnal variations</subject><subject>Earth, ocean, space</subject><subject>Energy dissipation</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluctuations</subject><subject>Internal waves</subject><subject>Kinetic energy</subject><subject>Marine</subject><subject>Ocean floor</subject><subject>Physics of the oceans</subject><subject>Potential energy</subject><subject>Solitary waves</subject><subject>Velocity</subject><subject>Water column</subject><subject>Winter</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0E1LAzEQBuAgCtbqwX-wCAqCWyeTTdIcpdQvCvWg55CkiWzZZmuyVfrv3dKC4GkYeOZleAm5pDCiVPL717c5A1WN6BEZUI5QQjXmx2QAgFgyIeGUnOW8BABBUQ3I3TT69LktumRiXrepK-y2iG1s6uhNKurY-RRNU_yYb5_PyUkwTfYXhzkkH4_T98lzOZs_vUweZqVjCrtSBGFZxRgswiI4UznAEBhaJoPigJJaYymCMWhlEIigxtwuuIR-9y5wNiQ3-9x1ar82Pnd6VWfnm8ZE326yRqiASyV6ePUPLtvN7t_eIFOMMgk9ut0jl9qckw96neqVSVtNQe9K04fSNO3t9SHQZGea0Lfi6vx3MFaSoRDsF5EsakA</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>MOUM, J. N</creator><creator>KLYMAK, J. M</creator><creator>NASH, J. D</creator><creator>PERLIN, A</creator><creator>SMYTH, W. D</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20070701</creationdate><title>Energy transport by nonlinear internal waves</title><author>MOUM, J. N ; KLYMAK, J. M ; NASH, J. D ; PERLIN, A ; SMYTH, W. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-6f6b34330dfdfca4c02ff32b37f950271bab120aa2b7f6220985bd5702b7ecf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bottom sediments</topic><topic>Boundary layers</topic><topic>Coastal oceanography, estuaries. Regional oceanography</topic><topic>Continental shelves</topic><topic>Contributions</topic><topic>Diurnal variations</topic><topic>Earth, ocean, space</topic><topic>Energy dissipation</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluctuations</topic><topic>Internal waves</topic><topic>Kinetic energy</topic><topic>Marine</topic><topic>Ocean floor</topic><topic>Physics of the oceans</topic><topic>Potential energy</topic><topic>Solitary waves</topic><topic>Velocity</topic><topic>Water column</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MOUM, J. N</creatorcontrib><creatorcontrib>KLYMAK, J. M</creatorcontrib><creatorcontrib>NASH, J. D</creatorcontrib><creatorcontrib>PERLIN, A</creatorcontrib><creatorcontrib>SMYTH, W. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MOUM, J. N</au><au>KLYMAK, J. M</au><au>NASH, J. D</au><au>PERLIN, A</au><au>SMYTH, W. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy transport by nonlinear internal waves</atitle><jtitle>Journal of physical oceanography</jtitle><date>2007-07-01</date><risdate>2007</risdate><volume>37</volume><issue>7</issue><spage>1968</spage><epage>1988</epage><pages>1968-1988</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><coden>JPYOBT</coden><abstract>Winter stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture disturbances that exhibit properties of internal solitary waves, bores, and gravity currents. Wavelike pulses are highly turbulent (instantaneous bed stresses are 1 N m−2), resuspending bottom sediments into the water column and raising them 30+ m above the seafloor. The wave cross-shelf transport of fluid often counters the time-averaged Ekman transport in the bottom boundary layer. In the nonlinear internal waves that were observed, the kinetic energy is roughly equal to the available potential energy and is O(0.1) megajoules per meter of coastline. The energy transported by these waves includes a nonlinear advection term 〈uE〉 that is negligible in linear internal waves. Unlike linear internal waves, the pressure–velocity energy flux 〈up〉 includes important contributions from nonhydrostatic effects and surface displacement. It is found that, statistically, 〈uE〉 ≃ 2〈up〉. Vertical profiles through these waves of elevation indicate that up(z) is more important in transporting energy near the seafloor while uE(z) dominates farther from the bottom. With the wave speed c estimated from weakly nonlinear wave theory, it is verified experimentally that the total energy transported by the waves is 〈up〉 + 〈uE〉 ≃ c〈E〉. The high but intermittent energy flux by the waves is, in an averaged sense, O(100) watts per meter of coastline. This is similar to independent estimates of the shoreward energy flux in the semidiurnal internal tide at the shelf break.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/JPO3094.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3670
ispartof Journal of physical oceanography, 2007-07, Vol.37 (7), p.1968-1988
issn 0022-3670
1520-0485
language eng
recordid cdi_proquest_miscellaneous_20405796
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals
subjects Bottom sediments
Boundary layers
Coastal oceanography, estuaries. Regional oceanography
Continental shelves
Contributions
Diurnal variations
Earth, ocean, space
Energy dissipation
Exact sciences and technology
External geophysics
Fluctuations
Internal waves
Kinetic energy
Marine
Ocean floor
Physics of the oceans
Potential energy
Solitary waves
Velocity
Water column
Winter
title Energy transport by nonlinear internal waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20transport%20by%20nonlinear%20internal%20waves&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=MOUM,%20J.%20N&rft.date=2007-07-01&rft.volume=37&rft.issue=7&rft.spage=1968&rft.epage=1988&rft.pages=1968-1988&rft.issn=0022-3670&rft.eissn=1520-0485&rft.coden=JPYOBT&rft_id=info:doi/10.1175/JPO3094.1&rft_dat=%3Cproquest_cross%3E1319093641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223931370&rft_id=info:pmid/&rfr_iscdi=true